亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A long line of research on secure computation has confirmed that anything that can be computed, can be computed securely using a set of non-colluding parties. Indeed, this non-collusion assumption makes a number of problems solvable, as well as reduces overheads and bypasses computational hardness results, and it is pervasive across different privacy-enhancing technologies. However, it remains highly susceptible to covert, undetectable collusion among computing parties. This work stems from an observation that if the number of available computing parties is much higher than the number of parties required to perform a secure computation task, collusion attempts in privacy-preserving computations could be deterred. We focus on the prominent privacy-preserving computation task of multi-server $1$-private information retrieval (PIR) that inherently assumes no pair-wise collusion. For PIR application scenarios, such as those for blockchain light clients, where the available servers can be plentiful, a single server's deviating action is not tremendously beneficial to itself. We can make deviations undesired via small amounts of rewards and penalties, thus significantly raising the bar for collusion resistance. We design and implement a collusion mitigation mechanism on a public bulletin board with payment execution functions, considering only rational and malicious parties with no honest non-colluding servers. Privacy protection is offered for an extended period after the query executions.

相關內容

Generating sufficient labeled data is a significant hurdle in the efficient execution of deep learning projects, especially in uncharted territories of image segmentation where labeling demands extensive time, unlike classification tasks. Our study confronts this challenge, operating in an environment constrained by limited hardware resources and the lack of extensive datasets or pre-trained models. We introduce the novel use of Inconsistency Masks (IM) to effectively filter uncertainty in image-pseudo-label pairs, substantially elevating segmentation quality beyond traditional semi-supervised learning techniques. By integrating IM with other methods, we demonstrate remarkable binary segmentation performance on the ISIC 2018 dataset, starting with just 10% labeled data. Notably, three of our hybrid models outperform those trained on the fully labeled dataset. Our approach consistently achieves exceptional results across three additional datasets and shows further improvement when combined with other techniques. For comprehensive and robust evaluation, this paper includes an extensive analysis of prevalent semi-supervised learning strategies, all trained under identical starting conditions. The full code is available at: //github.com/MichaelVorndran/InconsistencyMasks

Implicit neural representations (INRs) are a rapidly growing research field, which provides alternative ways to represent multimedia signals. Recent applications of INRs include image super-resolution, compression of high-dimensional signals, or 3D rendering. However, these solutions usually focus on visual data, and adapting them to the audio domain is not trivial. Moreover, it requires a separately trained model for every data sample. To address this limitation, we propose HyperSound, a meta-learning method leveraging hypernetworks to produce INRs for audio signals unseen at training time. We show that our approach can reconstruct sound waves with quality comparable to other state-of-the-art models.

With the increasing popularity of conversational search, how to evaluate the performance of conversational search systems has become an important question in the IR community. Existing works on conversational search evaluation can mainly be categorized into two streams: (1) constructing metrics based on semantic similarity (e.g. BLUE, METEOR and BERTScore), or (2) directly evaluating the response ranking performance of the system using traditional search methods (e.g. nDCG, RBP and nERR). However, these methods either ignore the information need of the user or ignore the mixed-initiative property of conversational search. This raises the question of how to accurately model user satisfaction in conversational search scenarios. Since explicitly asking users to provide satisfaction feedback is difficult, traditional IR studies often rely on the Cranfield paradigm (i.e., third-party annotation) and user behavior modeling to estimate user satisfaction in search. However, the feasibility and effectiveness of these two approaches have not been fully explored in conversational search. In this paper, we dive into the evaluation of conversational search from the perspective of user satisfaction. We build a novel conversational search experimental platform and construct a Chinese open-domain conversational search behavior dataset containing rich annotations and search behavior data. We also collect third-party satisfaction annotation at the session-level and turn-level, to investigate the feasibility of the Cranfield paradigm in the conversational search scenario. Experimental results show both some consistency and considerable differences between the user satisfaction annotations and third-party annotations. We also propose dialog continuation or ending behavior models (DCEBM) to capture session-level user satisfaction based on turn-level information.

Symbolic Computation algorithms and their implementation in computer algebra systems often contain choices which do not affect the correctness of the output but can significantly impact the resources required: such choices can benefit from having them made separately for each problem via a machine learning model. This study reports lessons on such use of machine learning in symbolic computation, in particular on the importance of analysing datasets prior to machine learning and on the different machine learning paradigms that may be utilised. We present results for a particular case study, the selection of variable ordering for cylindrical algebraic decomposition, but expect that the lessons learned are applicable to other decisions in symbolic computation. We utilise an existing dataset of examples derived from applications which was found to be imbalanced with respect to the variable ordering decision. We introduce an augmentation technique for polynomial systems problems that allows us to balance and further augment the dataset, improving the machine learning results by 28\% and 38\% on average, respectively. We then demonstrate how the existing machine learning methodology used for the problem $-$ classification $-$ might be recast into the regression paradigm. While this does not have a radical change on the performance, it does widen the scope in which the methodology can be applied to make choices.

Structural extraction of events within discourse is critical since it avails a deeper understanding of communication patterns and behavior trends. Event argument extraction (EAE), at the core of event-centric understanding, is the task of identifying role-specific text spans (i.e., arguments) for a given event. Document-level EAE (DocEAE) focuses on arguments that are scattered across an entire document. In this work, we explore the capabilities of open source Large Language Models (LLMs), i.e., Flan-UL2, for the DocEAE task. To this end, we propose ULTRA, a hierarchical framework that extracts event arguments more cost-effectively -- the method needs as few as 50 annotations and doesn't require hitting costly API endpoints. Further, it alleviates the positional bias issue intrinsic to LLMs. ULTRA first sequentially reads text chunks of a document to generate a candidate argument set, upon which ULTRA learns to drop non-pertinent candidates through self-refinement. We further introduce LEAFER to address the challenge LLMs face in locating the exact boundary of an argument span. ULTRA outperforms strong baselines, which include strong supervised models and ChatGPT, by 9.8% when evaluated by the exact match (EM) metric.

Generating bitmap graphics from text has gained considerable attention, yet for scientific figures, vector graphics are often preferred. Given that vector graphics are typically encoded using low-level graphics primitives, generating them directly is difficult. To address this, we propose the use of TikZ, a well-known abstract graphics language that can be compiled to vector graphics, as an intermediate representation of scientific figures. TikZ offers human-oriented, high-level commands, thereby facilitating conditional language modeling with any large language model. To this end, we introduce DaTikZ, the first large-scale TikZ dataset consisting of 120k TikZ drawings aligned with captions. We fine-tune LLaMA on DaTikZ, as well as our new model CLiMA, which augments LLaMA with multimodal CLIP embeddings. In both human and automatic evaluation, CLiMA and LLaMA outperform commercial GPT-4 and Claude 2 in terms of similarity to human-created figures, with CLiMA additionally improving text-image alignment. Our detailed analysis shows that all models generalize well and are not susceptible to memorization. GPT-4 and Claude 2, however, tend to generate more simplistic figures compared to both humans and our models. We make our framework, AutomaTikZ, along with model weights and datasets, publicly available.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

北京阿比特科技有限公司