亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial neural networks (ANNs) are increasingly used as research models, but questions remain about their generalizability and representational invariance. Biological neural networks under social constraints evolved to enable communicable representations, demonstrating generalization capabilities. This study proposes a communication protocol between cooperative agents to analyze the formation of individual and shared abstractions and their impact on task performance. This communication protocol aims to mimic language features by encoding high-dimensional information through low-dimensional representation. Using grid-world mazes and reinforcement learning, teacher ANNs pass a compressed message to a student ANN for better task completion. Through this, the student achieves a higher goal-finding rate and generalizes the goal location across task worlds. Further optimizing message content to maximize student reward improves information encoding, suggesting that an accurate representation in the space of messages requires bi-directional input. This highlights the role of language as a common representation between agents and its implications on generalization capabilities.

相關內容

Comprehending how the brain interacts with the external world through generated neural signals is crucial for determining its working mechanism, treating brain diseases, and understanding intelligence. Although many theoretical models have been proposed, they have thus far been difficult to integrate and develop. In this study, we were inspired in part by grid cells in creating a more general and robust grid module and constructing an interactive and self-reinforcing cognitive system together with Bayesian reasoning, an approach called space-division and exploration-exploitation with grid-feedback (Grid-SD2E). Here, a grid module can be used as an interaction medium between the outside world and a system, as well as a self-reinforcement medium within the system. The space-division and exploration-exploitation (SD2E) receives the 0/1 signals of a grid through its space-division (SD) module. The system described in this paper is also a theoretical model derived from experiments conducted by other researchers and our experience on neural decoding. Herein, we analyse the rationality of the system based on the existing theories in both neuroscience and cognitive science, and attempt to propose special and general rules to explain the different interactions between people and between people and the external world. What's more, based on this model, the smallest computing unit is extracted, which is analogous to a single neuron in the brain.

Before taking actions in an environment with more than one intelligent agent, an autonomous agent may benefit from reasoning about the other agents and utilizing a notion of a guarantee or confidence about the behavior of the system. In this article, we propose a novel multi-agent reinforcement learning (MARL) algorithm CAMMARL, which involves modeling the actions of other agents in different situations in the form of confident sets, i.e., sets containing their true actions with a high probability. We then use these estimates to inform an agent's decision-making. For estimating such sets, we use the concept of conformal predictions, by means of which, we not only obtain an estimate of the most probable outcome but get to quantify the operable uncertainty as well. For instance, we can predict a set that provably covers the true predictions with high probabilities (e.g., 95%). Through several experiments in two fully cooperative multi-agent tasks, we show that CAMMARL elevates the capabilities of an autonomous agent in MARL by modeling conformal prediction sets over the behavior of other agents in the environment and utilizing such estimates to enhance its policy learning. All developed codes can be found here: //github.com/Nikunj-Gupta/conformal-agent-modelling.

The robustness of multimodal deep learning models to realistic changes in the input text is critical for their applicability to important tasks such as text-to-image retrieval and cross-modal entailment. To measure robustness, several existing approaches edit the text data, but do so without leveraging the cross-modal information present in multimodal data. Information from the visual modality, such as color, size, and shape, provide additional attributes that users can include in their inputs. Thus, we propose cross-modal attribute insertions as a realistic perturbation strategy for vision-and-language data that inserts visual attributes of the objects in the image into the corresponding text (e.g., "girl on a chair" to "little girl on a wooden chair"). Our proposed approach for cross-modal attribute insertions is modular, controllable, and task-agnostic. We find that augmenting input text using cross-modal insertions causes state-of-the-art approaches for text-to-image retrieval and cross-modal entailment to perform poorly, resulting in relative drops of 15% in MRR and 20% in $F_1$ score, respectively. Crowd-sourced annotations demonstrate that cross-modal insertions lead to higher quality augmentations for multimodal data than augmentations using text-only data, and are equivalent in quality to original examples. We release the code to encourage robustness evaluations of deep vision-and-language models: //github.com/claws-lab/multimodal-robustness-xmai.

Social networks have been widely studied over the last century from multiple disciplines to understand societal issues such as inequality in employment rates, managerial performance, and epidemic spread. Today, these and many more issues can be studied at global scale thanks to the digital footprints that we generate when browsing the Web or using social media platforms. Unfortunately, scientists often struggle to access to such data primarily because it is proprietary, and even when it is shared with privacy guarantees, such data is either no representative or too big. In this tutorial, we will discuss recent advances and future directions in network modeling. In particular, we focus on how to exploit synthetic networks to study real-world problems such as data privacy, spreading dynamics, algorithmic bias, and ranking inequalities. We start by reviewing different types of generative models for social networks including node-attributed and scale-free networks. Then, we showcase how to perform a network selection analysis to characterize the mechanisms of edge formation of any given real-world network.

Training intelligent agents in Reinforcement Learning (RL) is much more time-consuming than animal learning. This is because agents learn from scratch, but animals learn with genes inherited from ancestors and are born with some innate abilities. Inspired by genes in animals, here we conceptualize the gene in intelligent agents and introduce Genetic Reinforcement Learning (GRL), a computational framework to represent, evaluate, and evolve genes (in agents). Leveraging GRL we identify genes and demonstrate several advantages of genes. First, we find that genes take the form of the fragment of agents' neural networks and can be inherited across generations. Second, we validate that genes bring better and stabler learning ability to agents, since genes condense knowledge from ancestors and bring agent with innate abilities. Third, we present evidence of Lamarckian evolution in intelligent agents. The continuous encoding of knowledge into genes across generations facilitates the evolution of genes. Overall, our work promotes a novel paradigm to train agents by incorporating genes.

As a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field, the utility is used to evaluate the level of individual needs, preferences, and interests. Especially for decision-making and learning in multi-agent/robot systems (MAS/MRS), a suitable utility model can guide agents in choosing reasonable strategies to achieve their current needs and learning to cooperate and organize their behaviors, optimizing the system's utility, building stable and reliable relationships, and guaranteeing each group member's sustainable development, similar to the human society. Although these systems' complex, large-scale, and long-term behaviors are strongly determined by the fundamental characteristics of the underlying relationships, there has been less discussion on the theoretical aspects of mechanisms and the fields of applications in Robotics and AI. This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions. Then, we survey existing literature in relevant fields to support it and propose several promising research directions along with some open problems deemed necessary for further investigations.

Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.

北京阿比特科技有限公司