亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most existing forecasting systems are memory-based methods, which attempt to mimic human forecasting ability by employing various memory mechanisms and have progressed in temporal modeling for memory dependency. Nevertheless, an obvious weakness of this paradigm is that it can only model limited historical dependence and can not transcend the past. In this paper, we rethink the temporal dependence of event evolution and propose a novel memory-anticipation-based paradigm to model an entire temporal structure, including the past, present, and future. Based on this idea, we present Memory-and-Anticipation Transformer (MAT), a memory-anticipation-based approach, to address the online action detection and anticipation tasks. In addition, owing to the inherent superiority of MAT, it can process online action detection and anticipation tasks in a unified manner. The proposed MAT model is tested on four challenging benchmarks TVSeries, THUMOS'14, HDD, and EPIC-Kitchens-100, for online action detection and anticipation tasks, and it significantly outperforms all existing methods. Code is available at //github.com/Echo0125/Memory-and-Anticipation-Transformer.

相關內容

Adversarial examples in machine learning has emerged as a focal point of research due to their remarkable ability to deceive models with seemingly inconspicuous input perturbations, potentially resulting in severe consequences. In this study, we embark on a comprehensive exploration of adversarial machine learning models, shedding light on their intrinsic complexity and interpretability. Our investigation reveals intriguing links between machine learning model complexity and Einstein's theory of special relativity, through the concept of entanglement. More specific, we define entanglement computationally and demonstrate that distant feature samples can exhibit strong correlations, akin to entanglement in quantum realm. This revelation challenges conventional perspectives in describing the phenomenon of adversarial transferability observed in contemporary machine learning models. By drawing parallels with the relativistic effects of time dilation and length contraction during computation, we gain deeper insights into adversarial machine learning, paving the way for more robust and interpretable models in this rapidly evolving field.

Model-based reinforcement learning seeks to simultaneously learn the dynamics of an unknown stochastic environment and synthesise an optimal policy for acting in it. Ensuring the safety and robustness of sequential decisions made through a policy in such an environment is a key challenge for policies intended for safety-critical scenarios. In this work, we investigate two complementary problems: first, computing reach-avoid probabilities for iterative predictions made with dynamical models, with dynamics described by Bayesian neural network (BNN); second, synthesising control policies that are optimal with respect to a given reach-avoid specification (reaching a "target" state, while avoiding a set of "unsafe" states) and a learned BNN model. Our solution leverages interval propagation and backward recursion techniques to compute lower bounds for the probability that a policy's sequence of actions leads to satisfying the reach-avoid specification. Such computed lower bounds provide safety certification for the given policy and BNN model. We then introduce control synthesis algorithms to derive policies maximizing said lower bounds on the safety probability. We demonstrate the effectiveness of our method on a series of control benchmarks characterized by learned BNN dynamics models. On our most challenging benchmark, compared to purely data-driven policies the optimal synthesis algorithm is able to provide more than a four-fold increase in the number of certifiable states and more than a three-fold increase in the average guaranteed reach-avoid probability.

Cross-modal retrieval of image-text and video-text is a prominent research area in computer vision and natural language processing. However, there has been insufficient attention given to cross-modal retrieval between human motion and text, despite its wide-ranging applicability. To address this gap, we utilize a concise yet effective dual-unimodal transformer encoder for tackling this task. Recognizing that overlapping atomic actions in different human motion sequences can lead to semantic conflicts between samples, we explore a novel triplet loss function called DropTriple Loss. This loss function discards false negative samples from the negative sample set and focuses on mining remaining genuinely hard negative samples for triplet training, thereby reducing violations they cause. We evaluate our model and approach on the HumanML3D and KIT Motion-Language datasets. On the latest HumanML3D dataset, we achieve a recall of 62.9% for motion retrieval and 71.5% for text retrieval (both based on R@10). The source code for our approach is publicly available at //github.com/eanson023/rehamot.

Simplicial complexes are a convenient semantic primitive to reason about processes (agents) communicating with each other in synchronous and asynchronous computation. Impure simplicial complexes distinguish active processes from crashed ones, in other words, agents that are alive from agents that are dead. In order to rule out that dead agents reason about themselves and about other agents, three-valued epistemic semantics have been proposed where, in addition to the usual values true and false, the third value stands for undefined: the knowledge of dead agents is undefined and so are the propositional variables describing their local state. Other semantics for impure complexes are two-valued where a dead agent knows everything. Different choices in designing a semantics produce different three-valued semantics, and also different two-valued semantics. In this work, we categorize the available choices by discounting the bad ones, identifying the equivalent ones, and connecting the non-equivalent ones via a translation. The main result of the paper is identifying the main relevant distinction to be the number of truth values and bridging this difference by means of a novel embedding from three- into two-valued semantics. This translation also enables us to highlight quite fundamental modeling differences underpinning various two- and three-valued approaches in this area of combinatorial topology. In particular, pure complexes can be defined as those invariant under the translation.

In the classical source coding problem, the compressed source is reconstructed at the decoder with respect to some distortion metric. Motivated by settings in which we are interested in more than simply reconstructing the compressed source, we investigate a single-shot compression problem where the decoder is tasked with reconstructing the original data as well as making inferences from it. Quality of inference and reconstruction is determined by a distortion criteria for each task. Given allowable distortion levels, we are interested in characterizing the probability of excess distortion. Modeling the joint inference and reconstruction problem as direct-indirect source coding one, we obtain lower and upper bounds for excess distortion probability. We specialize the converse bound and present a new easily computable achievability bound for the case where the distortion metric for reconstruction is logarithmic loss.

Molecule representation learning is crucial for various downstream applications, such as understanding and predicting molecular properties and side effects. In this paper, we propose a novel method called GODE, which takes into account the two-level structure of individual molecules. We recognize that molecules have an intrinsic graph structure as well as being a node in a larger molecule knowledge graph. GODE integrates graph representations of individual molecules with multidomain biochemical data from knowledge graphs. By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures. This fusion results in a more robust and informative representation, which enhances molecular property prediction by harnessing both chemical and biological information. When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks. Impressively, it surpasses the current leading model in molecule property predictions with average advancements of 2.1% in classification and 6.4% in regression tasks.

Predictive linear and nonlinear models based on kernel machines or deep neural networks have been used to discover dependencies among time series. This paper proposes an efficient nonlinear modeling approach for multiple time series, with a complexity comparable to linear vector autoregressive (VAR) models while still incorporating nonlinear interactions among different time-series variables. The modeling assumption is that the set of time series is generated in two steps: first, a linear VAR process in a latent space, and second, a set of invertible and Lipschitz continuous nonlinear mappings that are applied per sensor, that is, a component-wise mapping from each latent variable to a variable in the measurement space. The VAR coefficient identification provides a topology representation of the dependencies among the aforementioned variables. The proposed approach models each component-wise nonlinearity using an invertible neural network and imposes sparsity on the VAR coefficients to reflect the parsimonious dependencies usually found in real applications. To efficiently solve the formulated optimization problems, a custom algorithm is devised combining proximal gradient descent, stochastic primal-dual updates, and projection to enforce the corresponding constraints. Experimental results on both synthetic and real data sets show that the proposed algorithm improves the identification of the support of the VAR coefficients in a parsimonious manner while also improving the time-series prediction, as compared to the current state-of-the-art methods.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司