Nonlinear optimal control problems for trajectory planning with obstacle avoidance present several challenges. While general-purpose optimizers and dynamic programming methods struggle when adopted separately, their combination enabled by a penalty approach was found capable of handling highly nonlinear systems while overcoming the curse of dimensionality. Nevertheless, using dynamic programming with a fixed state space discretization limits the set of reachable solutions, hindering convergence or requiring enormous memory resources for uniformly spaced grids. In this work we solve this issue by incorporating an adaptive refinement of the state space grid, splitting cells where needed to better capture the problem structure while requiring less discretization points overall. Numerical results on a space manipulator demonstrate the improved robustness and efficiency of the combined method with respect to the single components.
Hybrid model predictive control with both continuous and discrete variables is widely applicable to robotic control tasks, especially those involving contact with the environment. Due to the combinatorial complexity, the solving speed of hybrid MPC can be insufficient for real-time applications. In this paper, we proposed a hybrid MPC solver based on Generalized Benders Decomposition (GBD). The algorithm enumerates and stores cutting planes online inside a finite buffer. After a short cold-start phase, the stored cuts provide warm-starts for the new problem instances to enhance the solving speed. Despite the disturbance and randomly changing environment, the solving speed maintains. Leveraging on the sparsity of feasibility cuts, we also propose a fast algorithm for Benders master problems. Our solver is validated through controlling a cart-pole system with randomly moving soft contact walls, and a free-flying robot navigating around obstacles. The results show that with significantly less data than previous works, the solver reaches competitive speeds to the off-the-shelf solver Gurobi despite the Python overhead.
We present a new method that includes three key components of distributed optimization and federated learning: variance reduction of stochastic gradients, partial participation, and compressed communication. We prove that the new method has optimal oracle complexity and state-of-the-art communication complexity in the partial participation setting. Regardless of the communication compression feature, our method successfully combines variance reduction and partial participation: we get the optimal oracle complexity, never need the participation of all nodes, and do not require the bounded gradients (dissimilarity) assumption.
We challenge the perceived consensus that the application of deep learning to solve the automated driving planning task necessarily requires huge amounts of real-world data or highly realistic simulation. Focusing on a roundabout scenario, we show that this requirement can be relaxed in favour of targeted, simplistic simulated data. A benefit is that such data can be easily generated for critical scenarios that are typically underrepresented in realistic datasets. By applying vanilla behavioural cloning almost exclusively to lightweight simulated data, we achieve reliable and comfortable driving in a real-world test vehicle. We leverage an incremental development approach that includes regular in-vehicle testing to identify sim-to-real gaps, targeted data augmentation, and training scenario variations. In addition to a detailed description of the methodology, we share our lessons learned, touching upon scenario generation, simulation features, and evaluation metrics.
This work presents an optimization method for the synthesis of finite state machines. The focus is on the reduction in the on-chip area and the cost of the circuit. A list of finite state machines from MCNC91 benchmark circuits have been evolved using Cartesian Genetic Programming. On the average, almost 30% of reduction in the total number of gates has been achieved. The effects of some parameters on the evolutionary process have also been discussed in the paper.
We describe a new general method for segmentation in MRI scans using Topological Data Analysis (TDA), offering several advantages over traditional machine learning approaches. It works in three steps, first identifying the whole object to segment via automatic thresholding, then detecting a distinctive subset whose topology is known in advance, and finally deducing the various components of the segmentation. Although convoking classical ideas of TDA, such an algorithm has never been proposed separately from deep learning methods. To achieve this, our approach takes into account, in addition to the homology of the image, the localization of representative cycles, a piece of information that seems never to have been exploited in this context. In particular, it offers the ability to perform segmentation without the need for large annotated data sets. TDA also provides a more interpretable and stable framework for segmentation by explicitly mapping topological features to segmentation components. By adapting the geometric object to be detected, the algorithm can be adjusted to a wide range of data segmentation challenges. We carefully study the examples of glioblastoma segmentation in brain MRI, where a sphere is to be detected, as well as myocardium in cardiac MRI, involving a cylinder, and cortical plate detection in fetal brain MRI, whose 2D slices are circles. We compare our method to state-of-the-art algorithms.
This work proposes a hybrid modeling framework based on recurrent neural networks (RNNs) and the finite element (FE) method to approximate model discrepancies in time dependent, multi-fidelity problems, and use the trained hybrid models to perform bias correction of the low-fidelity models. The hybrid model uses FE basis functions as a spatial basis and RNNs for the approximation of the time dependencies of the FE basis' degrees of freedom. The training data sets consist of sparse, non-uniformly sampled snapshots of the discrepancy function, pre-computed from trajectory data of low- and high-fidelity dynamic FE models. To account for data sparsity and prevent overfitting, data upsampling and local weighting factors are employed, to instigate a trade-off between physically conforming model behavior and neural network regression. The proposed hybrid modeling methodology is showcased in three highly non-trivial engineering test-cases, all featuring transient FE models, namely, heat diffusion out of a heat sink, eddy-currents in a quadrupole magnet, and sound wave propagation in a cavity. The results show that the proposed hybrid model is capable of approximating model discrepancies to a high degree of accuracy and accordingly correct low-fidelity models.
Factor importance measures the impact of each feature on output prediction accuracy. Many existing works focus on the model-based importance, but an important feature in one learning algorithm may hold little significance in another model. Hence, a factor importance measure ought to characterize the feature's predictive potential without relying on a specific prediction algorithm. Such algorithm-agnostic importance is termed as intrinsic importance in Williamson et al. (2023), but their estimator again requires model fitting. To bypass the modeling step, we present the equivalence between predictiveness potential and total Sobol' indices from global sensitivity analysis, and introduce a novel consistent estimator that can be directly estimated from noisy data. Integrating with forward selection and backward elimination gives rise to FIRST, Factor Importance Ranking and Selection using Total (Sobol') indices. Extensive simulations are provided to demonstrate the effectiveness of FIRST on regression and binary classification problems, and a clear advantage over the state-of-the-art methods.
AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.
Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.