In this paper, we present a novel approach for detecting the discontinuity interfaces of a discontinuous function. This approach leverages Graph-Informed Neural Networks (GINNs) and sparse grids to address discontinuity detection also in domains of dimension larger than 3. GINNs, trained to identify troubled points on sparse grids, exploit graph structures built on the grids to achieve efficient and accurate discontinuity detection performances. We also introduce a recursive algorithm for general sparse grid-based detectors, characterized by convergence properties and easy applicability. Numerical experiments on functions with dimensions n = 2 and n = 4 demonstrate the efficiency and robust generalization of GINNs in detecting discontinuity interfaces. Notably, the trained GINNs offer portability and versatility, allowing integration into various algorithms and sharing among users.
We develop DMAVFL, a novel attack strategy that evades current detection mechanisms. The key idea is to integrate a discriminator with auxiliary classifier that takes a full advantage of the label information (which was completely ignored in previous attacks): on one hand, label information helps to better characterize embeddings of samples from distinct classes, yielding an improved reconstruction performance; on the other hand, computing malicious gradients with label information better mimics the honest training, making the malicious gradients indistinguishable from the honest ones, and the attack much more stealthy. Our comprehensive experiments demonstrate that DMAVFL significantly outperforms existing attacks, and successfully circumvents SOTA defenses for malicious attacks. Additional ablation studies and evaluations on other defenses further underscore the robustness and effectiveness of DMAVFL.
In this paper, we propose a novel method for speaker adaptation in lip reading, motivated by two observations. Firstly, a speaker's own characteristics can always be portrayed well by his/her few facial images or even a single image with shallow networks, while the fine-grained dynamic features associated with speech content expressed by the talking face always need deep sequential networks to represent accurately. Therefore, we treat the shallow and deep layers differently for speaker adaptive lip reading. Secondly, we observe that a speaker's unique characteristics ( e.g. prominent oral cavity and mandible) have varied effects on lip reading performance for different words and pronunciations, necessitating adaptive enhancement or suppression of the features for robust lip reading. Based on these two observations, we propose to take advantage of the speaker's own characteristics to automatically learn separable hidden unit contributions with different targets for shallow layers and deep layers respectively. For shallow layers where features related to the speaker's characteristics are stronger than the speech content related features, we introduce speaker-adaptive features to learn for enhancing the speech content features. For deep layers where both the speaker's features and the speech content features are all expressed well, we introduce the speaker-adaptive features to learn for suppressing the speech content irrelevant noise for robust lip reading. Our approach consistently outperforms existing methods, as confirmed by comprehensive analysis and comparison across different settings. Besides the evaluation on the popular LRW-ID and GRID datasets, we also release a new dataset for evaluation, CAS-VSR-S68h, to further assess the performance in an extreme setting where just a few speakers are available but the speech content covers a large and diversified range.
This work designs and analyzes a novel set of algorithms for multi-agent reinforcement learning (MARL) based on the principle of information-directed sampling (IDS). These algorithms draw inspiration from foundational concepts in information theory, and are proven to be sample efficient in MARL settings such as two-player zero-sum Markov games (MGs) and multi-player general-sum MGs. For episodic two-player zero-sum MGs, we present three sample-efficient algorithms for learning Nash equilibrium. The basic algorithm, referred to as MAIDS, employs an asymmetric learning structure where the max-player first solves a minimax optimization problem based on the joint information ratio of the joint policy, and the min-player then minimizes the marginal information ratio with the max-player's policy fixed. Theoretical analyses show that it achieves a Bayesian regret of tilde{O}(sqrt{K}) for K episodes. To reduce the computational load of MAIDS, we develop an improved algorithm called Reg-MAIDS, which has the same Bayesian regret bound while enjoying less computational complexity. Moreover, by leveraging the flexibility of IDS principle in choosing the learning target, we propose two methods for constructing compressed environments based on rate-distortion theory, upon which we develop an algorithm Compressed-MAIDS wherein the learning target is a compressed environment. Finally, we extend Reg-MAIDS to multi-player general-sum MGs and prove that it can learn either the Nash equilibrium or coarse correlated equilibrium in a sample efficient manner.
In this paper, a novel adaptive finite element method is proposed to solve the Kohn-Sham equation based on the moving mesh (nonnested mesh) adaptive technique and the augmented subspace method. Different from the classical self-consistent field iterative algorithm which requires to solve the Kohn-Sham equation directly in each adaptive finite element space, our algorithm transforms the Kohn-Sham equation into some linear boundary value problems of the same scale in each adaptive finite element space, and then the wavefunctions derived from the linear boundary value problems are corrected by solving a small-scale Kohn-Sham equation defined in a low-dimensional augmented subspace. Since the new algorithm avoids solving large-scale Kohn-Sham equation directly, a significant improvement for the solving efficiency can be obtained. In addition, the adaptive moving mesh technique is used to generate the nonnested adaptive mesh for the nonnested augmented subspace method according to the singularity of the approximate wavefunctions. The modified Hessian matrix of the approximate wavefunctions is used as the metric matrix to redistribute the mesh. Through the moving mesh adaptive technique, the redistributed mesh is almost optimal. A number of numerical experiments are carried out to verify the efficiency and the accuracy of the proposed algorithm.
In this paper, we set the mathematical foundations of the Dynamical Low-Rank Approximation (DLRA) method for stochastic differential equations. DLRA aims at approximating the solution as a linear combination of a small number of basis vectors with random coefficients (low rank format) with the peculiarity that both the basis vectors and the random coefficients vary in time. While the formulation and properties of DLRA are now well understood for random/parametric equations, the same cannot be said for SDEs and this work aims to fill this gap. We start by rigorously formulating a Dynamically Orthogonal (DO) approximation (an instance of DLRA successfully used in applications) for SDEs, which we then generalize to define a parametrization independent DLRA for SDEs. We show local well-posedness of the DO equations and their equivalence with the DLRA formulation. We also characterize the explosion time of the DO solution by a loss of linear independence of the random coefficients defining the solution expansion and give sufficient conditions for global existence.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax