The zero-shot learning capabilities of large language models (LLMs) make them ideal for text classification without annotation or supervised training. Many studies have shown impressive results across multiple tasks. While tasks, data, and results differ widely, their similarities to human annotation can aid us in tackling new tasks with minimal expenses. We evaluate using 5 state-of-the-art LLMs as "annotators" on 5 different tasks (age, gender, topic, sentiment prediction, and hate speech detection), across 4 languages: English, French, German, and Spanish. No single model excels at all tasks, across languages, or across all labels within a task. However, aggregation techniques designed for human annotators perform substantially better than any one individual model. Overall, though, LLMs do not rival even simple supervised models, so they do not (yet) replace the need for human annotation. We also discuss the tradeoffs between speed, accuracy, cost, and bias when it comes to aggregated model labeling versus human annotation.
Recently, large-scale pre-trained language-image models like CLIP have shown extraordinary capabilities for understanding spatial contents, but naively transferring such models to video recognition still suffers from unsatisfactory temporal modeling capabilities. Existing methods insert tunable structures into or in parallel with the pre-trained model, which either requires back-propagation through the whole pre-trained model and is thus resource-demanding, or is limited by the temporal reasoning capability of the pre-trained structure. In this work, we present DiST, which disentangles the learning of spatial and temporal aspects of videos. Specifically, DiST uses a dual-encoder structure, where a pre-trained foundation model acts as the spatial encoder, and a lightweight network is introduced as the temporal encoder. An integration branch is inserted between the encoders to fuse spatio-temporal information. The disentangled spatial and temporal learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters. Meanwhile, we empirically show that disentangled learning with an extra network for integration benefits both spatial and temporal understanding. Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps. When pre-training on the large-scale Kinetics-710, we achieve 89.7% on Kinetics-400 with a frozen ViT-L model, which verifies the scalability of DiST. Codes and models can be found in //github.com/alibaba-mmai-research/DiST.
Large language models (LLMs) have shown great promise for capturing contextual information in natural language processing tasks. We propose a novel approach to speaker diarization that incorporates the prowess of LLMs to exploit contextual cues in human dialogues. Our method builds upon an acoustic-based speaker diarization system by adding lexical information from an LLM in the inference stage. We model the multi-modal decoding process probabilistically and perform joint acoustic and lexical beam search to incorporate cues from both modalities: audio and text. Our experiments demonstrate that infusing lexical knowledge from the LLM into an acoustics-only diarization system improves overall speaker-attributed word error rate (SA-WER). The experimental results show that LLMs can provide complementary information to acoustic models for the speaker diarization task via proposed beam search decoding approach showing up to 39.8% relative delta-SA-WER improvement from the baseline system. Thus, we substantiate that the proposed technique is able to exploit contextual information that is inaccessible to acoustics-only systems which is represented by speaker embeddings. In addition, these findings point to the potential of using LLMs to improve speaker diarization and other speech processing tasks by capturing semantic and contextual cues.
Multi-modal large language models (MLLMs) are trained based on large language models (LLM), with an enhanced capability to comprehend multi-modal inputs and generate textual responses. While they excel in multi-modal tasks, the pure NLP abilities of MLLMs are often underestimated and left untested. In this study, we get out of the box and unveil an intriguing characteristic of MLLMs -- our preliminary results suggest that visual instruction tuning, a prevailing strategy for transitioning LLMs into MLLMs, unexpectedly and interestingly helps models attain both improved truthfulness and ethical alignment in the pure NLP context. For example, a visual-instruction-tuned LLaMA2 7B model surpasses the performance of the LLaMA2-chat 7B model, fine-tuned with over one million human annotations, on TruthfulQA-mc and Ethics benchmarks. Further analysis reveals that the improved alignment can be attributed to the superior instruction quality inherent to visual-text data. In releasing our code at github.com/UCSC-VLAA/Sight-Beyond-Text, we aspire to foster further exploration into the intrinsic value of visual-text synergies and, in a broader scope, multi-modal interactions in alignment research.
Vision-language models (VLMs) pre-trained on web-scale datasets have demonstrated remarkable capabilities across a variety of vision and multimodal tasks. Currently, fine-tuning methods for VLMs mainly operate in a white-box setting, requiring access to model parameters for backpropagation. However, many VLMs rely on proprietary data and are not open-source, which restricts the use of white-box approaches for fine-tuning. Given that popular private large language models (LLMs) like ChatGPT still offer a language-based user interface, we aim to develop a novel fine-tuning approach for VLMs through natural language prompts, thereby avoiding the need to access model parameters, feature embeddings, or output logits. In this setup, we propose employing chat-based LLMs as black-box optimizers to search for the best text prompt on the illustrative task of few-shot image classification using CLIP. Specifically, we adopt an automatic "hill-climbing" procedure that converges on an effective prompt by evaluating the accuracy of current prompts and asking LLMs to refine them based on textual feedback, all within a conversational process without human-in-the-loop. In a challenging 1-shot learning setup, our simple approach surpasses the white-box continuous prompting method CoOp by an average of 1.5% across 11 datasets including ImageNet. Our approach also outperforms OpenAI's manually crafted prompts and is more efficient than other black-box methods like iterative APE. Additionally, we highlight the advantage of conversational feedback incorporating both positive and negative prompts, suggesting that LLMs can utilize the implicit "gradient" direction in textual feedback for a more efficient search. Lastly, we find that the text prompts generated through our strategy are not only more interpretable but also transfer well across different CLIP architectures in a black-box manner.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.