Large Language Models (LLMs) can generate biased and toxic responses. Yet most prior work on LLM gender bias evaluation requires predefined gender-related phrases or gender stereotypes, which are challenging to be comprehensively collected and are limited to explicit bias evaluation. In addition, we believe that instances devoid of gender-related language or explicit stereotypes in inputs can still induce gender bias in LLMs. Thus, in this work, we propose a conditional text generation mechanism without the need for predefined gender phrases and stereotypes. This approach employs three types of inputs generated through three distinct strategies to probe LLMs, aiming to show evidence of explicit and implicit gender biases in LLMs. We also utilize explicit and implicit evaluation metrics to evaluate gender bias in LLMs under different strategies. Our experiments demonstrate that an increased model size does not consistently lead to enhanced fairness and all tested LLMs exhibit explicit and/or implicit gender bias, even when explicit gender stereotypes are absent in the inputs.
We consider the problem of policy transfer between two Markov Decision Processes (MDPs). We introduce a lemma based on existing theoretical results in reinforcement learning to measure the relativity gap between two arbitrary MDPs, that is the difference between any two cumulative expected returns defined on different policies and environment dynamics. Based on this lemma, we propose two new algorithms referred to as Relative Policy Optimization (RPO) and Relative Transition Optimization (RTO), which offer fast policy transfer and dynamics modelling, respectively. RPO transfers the policy evaluated in one environment to maximize the return in another, while RTO updates the parameterized dynamics model to reduce the gap between the dynamics of the two environments. Integrating the two algorithms results in the complete Relative Policy-Transition Optimization (RPTO) algorithm, in which the policy interacts with the two environments simultaneously, such that data collections from two environments, policy and transition updates are completed in one closed loop to form a principled learning framework for policy transfer. We demonstrate the effectiveness of RPTO on a set of MuJoCo continuous control tasks by creating policy transfer problems via variant dynamics.
Through additional training, we explore embedding specialized scientific knowledge into the Llama 2 Large Language Model (LLM). Key findings reveal that effective knowledge integration requires reading texts from multiple perspectives, especially in instructional formats. We utilize text augmentation to tackle the scarcity of specialized texts, including style conversions and translations. Hyperparameter optimization proves crucial, with different size models (7b, 13b, and 70b) reasonably undergoing additional training. Validating our methods, we construct a dataset of 65,000 scientific papers. Although we have succeeded in partially embedding knowledge, the study highlights the complexities and limitations of incorporating specialized information into LLMs, suggesting areas for further improvement.
Abstract Visual Reasoning (AVR) comprises a wide selection of various problems similar to those used in human IQ tests. Recent years have brought dynamic progress in solving particular AVR tasks, however, in the contemporary literature AVR problems are largely dealt with in isolation, leading to highly specialized task-specific methods. With the aim of developing universal learning systems in the AVR domain, we propose the unified model for solving Single-Choice Abstract visual Reasoning tasks (SCAR), capable of solving various single-choice AVR tasks, without making any a priori assumptions about the task structure, in particular the number and location of panels. The proposed model relies on a novel Structure-Aware dynamic Layer (SAL), which adapts its weights to the structure of the considered AVR problem. Experiments conducted on Raven's Progressive Matrices, Visual Analogy Problems, and Odd One Out problems show that SCAR (SAL-based models, in general) effectively solves diverse AVR tasks, and its performance is on par with the state-of-the-art task-specific baselines. What is more, SCAR demonstrates effective knowledge reuse in multi-task and transfer learning settings. To our knowledge, this work is the first successful attempt to construct a general single-choice AVR solver relying on self-configurable architecture and unified solving method. With this work we aim to stimulate and foster progress on task-independent research paths in the AVR domain, with the long-term goal of development of a general AVR solver.
Recurrent Neural Networks (RNNs) are useful in temporal sequence tasks. However, training RNNs involves dense matrix multiplications which require hardware that can support a large number of arithmetic operations and memory accesses. Implementing online training of RNNs on the edge calls for optimized algorithms for an efficient deployment on hardware. Inspired by the spiking neuron model, the Delta RNN exploits temporal sparsity during inference by skipping over the update of hidden states from those inactivated neurons whose change of activation across two timesteps is below a defined threshold. This work describes a training algorithm for Delta RNNs that exploits temporal sparsity in the backward propagation phase to reduce computational requirements for training on the edge. Due to the symmetric computation graphs of forward and backward propagation during training, the gradient computation of inactivated neurons can be skipped. Results show a reduction of $\sim$80% in matrix operations for training a 56k parameter Delta LSTM on the Fluent Speech Commands dataset with negligible accuracy loss. Logic simulations of a hardware accelerator designed for the training algorithm show 2-10X speedup in matrix computations for an activation sparsity range of 50%-90%. Additionally, we show that the proposed Delta RNN training will be useful for online incremental learning on edge devices with limited computing resources.
The increasing availability of Massive Open Online Courses (MOOCs) has created a necessity for personalized course recommendation systems. These systems often combine neural networks with Knowledge Graphs (KGs) to achieve richer representations of learners and courses. While these enriched representations allow more accurate and personalized recommendations, explainability remains a significant challenge which is especially problematic for certain domains with significant impact such as education and online learning. Recently, a novel class of recommender systems that uses reinforcement learning and graph reasoning over KGs has been proposed to generate explainable recommendations in the form of paths over a KG. Despite their accuracy and interpretability on e-commerce datasets, these approaches have scarcely been applied to the educational domain and their use in practice has not been studied. In this work, we propose an explainable recommendation system for MOOCs that uses graph reasoning. To validate the practical implications of our approach, we conducted a user study examining user perceptions of our new explainable recommendations. We demonstrate the generalizability of our approach by conducting experiments on two educational datasets: COCO and Xuetang.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.