亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In current virtual try-on tasks, only the effect of clothing worn on a person is depicted. In practical applications, users still need to select suitable clothing from a vast array of individual clothing items, but existing clothes may not be able to meet the needs of users. Additionally, some user groups may be uncertain about what clothing combinations suit them and require clothing selection recommendations. However, the retrieval-based recommendation methods cannot meet users' personalized needs, so we propose the Generative Fashion Matching-aware Virtual Try-on Framework(GMVT). We generate coordinated and stylistically diverse clothing for users using the Generative Matching Module. In order to effectively learn matching information, we leverage large-scale matching dataset, and transfer this acquired knowledge to the current virtual try-on domain. Furthermore, we utilize the Virtual Try-on Module to visualize the generated clothing on the user's body. To validate the effectiveness of our approach, we enlisted the expertise of fashion designers for a professional evaluation, assessing the rationality and diversity of the clothing combinations and conducting an evaluation matrix analysis. Our method significantly enhances the practicality of virtual try-on, offering users a wider range of clothing choices and an improved user experience.

相關內容

Open-sourced, user-friendly tools form the bedrock of scientific advancement across disciplines. The widespread adoption of data-driven learning has led to remarkable progress in multi-fingered dexterity, bimanual manipulation, and applications ranging from logistics to home robotics. However, existing data collection platforms are often proprietary, costly, or tailored to specific robotic morphologies. We present OPEN TEACH, a new teleoperation system leveraging VR headsets to immerse users in mixed reality for intuitive robot control. Built on the affordable Meta Quest 3, which costs $500, OPEN TEACH enables real-time control of various robots, including multi-fingered hands and bimanual arms, through an easy-to-use app. Using natural hand gestures and movements, users can manipulate robots at up to 90Hz with smooth visual feedback and interface widgets offering closeup environment views. We demonstrate the versatility of OPEN TEACH across 38 tasks on different robots. A comprehensive user study indicates significant improvement in teleoperation capability over the AnyTeleop framework. Further experiments exhibit that the collected data is compatible with policy learning on 10 dexterous and contact-rich manipulation tasks. Currently supporting Franka, xArm, Jaco, and Allegro platforms, OPEN TEACH is fully open-sourced to promote broader adoption. Videos are available at //open-teach.github.io/.

To solve complex tasks, large language models (LLMs) often require multiple rounds of interactions with the user, sometimes assisted by external tools. However, current evaluation protocols often emphasize benchmark performance with single-turn exchanges, neglecting the nuanced interactions among the user, LLMs, and external tools, while also underestimating the importance of natural language feedback from users. These oversights contribute to discrepancies between research benchmark evaluations and real-world use cases. We introduce MINT, a benchmark that evaluates LLMs' ability to solve tasks with multi-turn interactions by (1) using tools and (2) leveraging natural language feedback. To ensure reproducibility, we provide an evaluation framework where LLMs can access tools by executing Python code and receive users' natural language feedback simulated by GPT-4. We repurpose a diverse set of established evaluation datasets focusing on reasoning, coding, and decision-making and carefully curate them into a compact subset for efficient evaluation. Our analysis of 20 open- and closed-source LLMs offers intriguing findings. (a) LLMs generally benefit from tools and language feedback, with performance gains (absolute, same below) of 1-8% for each turn of tool use and 2-17% with natural language feedback. (b) Better single-turn performance does not guarantee better multi-turn performance. (c) Surprisingly, on the LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities. We expect MINT can help measure progress and incentivize research in improving LLMs' capabilities in multi-turn interactions, especially for open-source communities where multi-turn human evaluation can be less accessible compared to commercial LLMs with a larger user base.

Learning Granger causality from event sequences is a challenging but essential task across various applications. Most existing methods rely on the assumption that event sequences are independent and identically distributed (i.i.d.). However, this i.i.d. assumption is often violated due to the inherent dependencies among the event sequences. Fortunately, in practice, we find these dependencies can be modeled by a topological network, suggesting a potential solution to the non-i.i.d. problem by introducing the prior topological network into Granger causal discovery. This observation prompts us to tackle two ensuing challenges: 1) how to model the event sequences while incorporating both the prior topological network and the latent Granger causal structure, and 2) how to learn the Granger causal structure. To this end, we devise a unified topological neural Poisson auto-regressive model with two processes. In the generation process, we employ a variant of the neural Poisson process to model the event sequences, considering influences from both the topological network and the Granger causal structure. In the inference process, we formulate an amortized inference algorithm to infer the latent Granger causal structure. We encapsulate these two processes within a unified likelihood function, providing an end-to-end framework for this task. Experiments on simulated and real-world data demonstrate the effectiveness of our approach.

In multiple federated learning schemes, a random subset of clients sends in each round their model updates to the server for aggregation. Although this client selection strategy aims to reduce communication overhead, it remains energy and computationally inefficient, especially when considering resource-constrained devices as clients. This is because conventional random client selection overlooks the content of exchanged information and falls short of providing a mechanism to reduce the transmission of semantically redundant data. To overcome this challenge, we propose clustering the clients with the aid of similarity metrics, where a single client from each of the formed clusters is selected in each round to participate in the federated training. To evaluate our approach, we perform an extensive feasibility study considering the use of nine statistical metrics in the clustering process. Simulation results reveal that, when considering a scenario with high data heterogeneity of clients, similarity-based clustering can reduce the number of required rounds compared to the baseline random client selection. In addition, energy consumption can be notably reduced from 23.93% to 41.61%, for those similarity metrics with an equivalent number of clients per round as the baseline random scheme.

With the proliferation of spatio-textual data, Top-k KNN spatial keyword queries (TkQs), which return a list of objects based on a ranking function that evaluates both spatial and textual relevance, have found many real-life applications. Existing geo-textual indexes for TkQs use traditional retrieval models like BM25 to compute text relevance and usually exploit a simple linear function to compute spatial relevance, but its effectiveness is limited. To improve effectiveness, several deep learning models have recently been proposed, but they suffer severe efficiency issues. To the best of our knowledge, there are no efficient indexes specifically designed to accelerate the top-k search process for these deep learning models. To tackle these issues, we propose a novel technique, which Learns to Index the Spatio-Textual data for answering embedding based spatial keyword queries (called LIST). LIST is featured with two novel components. Firstly, we propose a lightweight and effective relevance model that is capable of learning both textual and spatial relevance. Secondly, we introduce a novel machine learning based Approximate Nearest Neighbor Search (ANNS) index, which utilizes a new learning-to-cluster technique to group relevant queries and objects together while separating irrelevant queries and objects. Two key challenges in building an effective and efficient index are the absence of high-quality labels and unbalanced clustering results. We develop a novel pseudo-label generation technique to address the two challenges. Experimental results show that LIST significantly outperforms state-of-the-art methods on effectiveness, with improvements up to 19.21% and 12.79% in terms of NDCG@1 and Recall@10, and is three orders of magnitude faster than the most effective baseline.

In real-world applications, dynamic scenarios require the models to possess the capability to learn new tasks continuously without forgetting the old knowledge. Experience-Replay methods store a subset of the old images for joint training. In the scenario of more strict privacy protection, storing the old images becomes infeasible, which leads to a more severe plasticity-stability dilemma and classifier bias. To meet the above challenges, we propose a new architecture, named continual expansion and absorption transformer~(CEAT). The model can learn the novel knowledge by extending the expanded-fusion layers in parallel with the frozen previous parameters. After the task ends, we losslessly absorb the extended parameters into the backbone to ensure that the number of parameters remains constant. To improve the learning ability of the model, we designed a novel prototype contrastive loss to reduce the overlap between old and new classes in the feature space. Besides, to address the classifier bias towards the new classes, we propose a novel approach to generate the pseudo-features to correct the classifier. We experiment with our methods on three standard Non-Exemplar Class-Incremental Learning~(NECIL) benchmarks. Extensive experiments demonstrate that our model gets a significant improvement compared with the previous works and achieves 5.38%, 5.20%, and 4.92% improvement on CIFAR-100, TinyImageNet, and ImageNet-Subset.

Video streaming continues to captivate attention of users and service providers, dominate in Internet traffic, and form a vibrant research field. Taking a pragmatic approach to reviewing recent research in the field, this paper considers the most dominant streaming paradigm, the main aspects of which include transmission of two-dimensional videos over the best-effort Internet, support from content delivery networks, and client-side bitrate adaptation. To make the survey more accessible, we incorporate extensive tutorial materials. In contrast with the siloed approaches of existing surveys, our paper holistically covers the end-to-end streaming pipeline from video capture and upload for server processing to distribution for playback on diverse user devices. Reflecting the practical interests of respective stakeholders, our survey presents a novel perspective on end-to-end streaming and sheds light on the relationships and interactions between its ingestion, processing, and distribution stages. At each stage, we classify streaming designs in regard to their methodology depending on whether intuition, theory, or machine learning serves as a methodological basis for their core contribution. In addition to tasks confined to a single stage, the survey also examines transversal topics such as coding, super resolution, and quality of experience. After surveying more than 200 papers, we synthesize current trends and project future directions in video streaming research.

Temporal data, notably time series and spatio-temporal data, are prevalent in real-world applications. They capture dynamic system measurements and are produced in vast quantities by both physical and virtual sensors. Analyzing these data types is vital to harnessing the rich information they encompass and thus benefits a wide range of downstream tasks. Recent advances in large language and other foundational models have spurred increased use of these models in time series and spatio-temporal data mining. Such methodologies not only enable enhanced pattern recognition and reasoning across diverse domains but also lay the groundwork for artificial general intelligence capable of comprehending and processing common temporal data. In this survey, we offer a comprehensive and up-to-date review of large models tailored (or adapted) for time series and spatio-temporal data, spanning four key facets: data types, model categories, model scopes, and application areas/tasks. Our objective is to equip practitioners with the knowledge to develop applications and further research in this underexplored domain. We primarily categorize the existing literature into two major clusters: large models for time series analysis (LM4TS) and spatio-temporal data mining (LM4STD). On this basis, we further classify research based on model scopes (i.e., general vs. domain-specific) and application areas/tasks. We also provide a comprehensive collection of pertinent resources, including datasets, model assets, and useful tools, categorized by mainstream applications. This survey coalesces the latest strides in large model-centric research on time series and spatio-temporal data, underscoring the solid foundations, current advances, practical applications, abundant resources, and future research opportunities.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司