This chapter provides a comprehensive overview of the pragmatic aspects involved in organizing AI competitions. We begin by discussing strategies to incentivize participation, touching upon effective communication techniques, aligning with trending topics in the field, structuring awards, potential recruitment opportunities, and more. We then shift to the essence of community engagement, and into organizational best practices and effective means of disseminating challenge outputs. Lastly, the chapter addresses the logistics, exposing on costs, required manpower, and resource allocation for effectively managing and executing a challenge. By examining these practical problems, readers will gain actionable insights to navigate the multifaceted landscape of AI competition organization, from inception to completion.
A biometric recognition system can operate in two distinct modes: identification or verification. In the first mode, the system recognizes an individual by searching the enrolled templates of all the users for a match. In the second mode, the system validates a user's identity claim by comparing the fresh provided template with the enrolled template. The biometric transformation schemes usually produce binary templates that are better handled by cryptographic schemes, and the comparison is based on a distance that leaks information about the similarities between two biometric templates. Both the experimentally determined false match rate and false non-match rate through recognition threshold adjustment define the recognition accuracy, and hence the security of the system. To our knowledge, few works provide a formal treatment of security in case of minimal information leakage, i.e., the binary outcome of a comparison with a threshold. In this paper, we focus on untargeted attacks that can be carried out both online and offline, and in both identification and verification modes. On the first hand, we focus our analysis on the accuracy metrics of biometric systems. We provide the complexity of untargeted attacks using the False Match Rate (FMR) and the False Positive Identification Rate (FPIR) to address the security of these systems. Studying near-collisions with these metrics allows us to estimate the maximum number of users in a database, given a chosen FMR, to preserve the security and the accuracy. These results are evaluated on systems from the literature. On the other hand, we rely on probabilistic modelling to assess the theoretical security limits of biometric systems. The study of this metric space, and system parameters (template size, threshold and database size), gives us the complexity of untargeted attacks and the probability of a near-collision.
This short paper presents a compact overview of the Czech approach to implementing the European Open Science Cloud and plans for developing a Czech national infrastructure for FAIR research data. Its purpose is to provide an all-encompassing summary of the near future of research data management in Czechia. As such, we deliberately attempt to explain complicated concepts in minimum words, sacrificing the precision of expression for compactness.
The word order of a sentence is shaped by multiple principles. The principle of syntactic dependency distance minimization is in conflict with the principle of surprisal minimization (or predictability maximization) in single head syntactic dependency structures: while the former predicts that the head should be placed at the center of the linear arrangement, the latter predicts that the head should be placed at one of the ends (either first or last). A critical question is when surprisal minimization (or predictability maximization) should surpass syntactic dependency distance minimization. In the context of single head structures, it has been predicted that this is more likely to happen when two conditions are met, i.e. (a) fewer words are involved and (b) words are shorter. Here we test the prediction on the noun phrase when its composed of a demonstrative, a numeral, an adjective and a noun. We find that, across preferred orders in languages, the noun tends to be placed at one of the ends, confirming the theoretical prediction. We also show evidence of anti locality effects: syntactic dependency distances in preferred orders are longer than expected by chance.
White matter hyperintensity (WMH) remains the top imaging biomarker for neurodegenerative diseases. Robust and accurate segmentation of WMH holds paramount significance for neuroimaging studies. The growing shift from 3T to 7T MRI necessitates robust tools for harmonized segmentation across field strengths and artifacts. Recent deep learning models exhibit promise in WMH segmentation but still face challenges, including diverse training data representation and limited analysis of MRI artifacts' impact. To address these, we introduce wmh_seg, a novel deep learning model leveraging a transformer-based encoder from SegFormer. wmh_seg is trained on an unmatched dataset, including 1.5T, 3T, and 7T FLAIR images from various sources, alongside with artificially added MR artifacts. Our approach bridges gaps in training diversity and artifact analysis. Our model demonstrated stable performance across magnetic field strengths, scanner manufacturers, and common MR imaging artifacts. Despite the unique inhomogeneity artifacts on ultra-high field MR images, our model still offers robust and stable segmentation on 7T FLAIR images. Our model, to date, is the first that offers quality white matter lesion segmentation on 7T FLAIR images.
TorchCP is a Python toolbox for conformal prediction research on deep learning models. It contains various implementations for posthoc and training methods for classification and regression tasks (including multi-dimension output). TorchCP is built on PyTorch (Paszke et al., 2019) and leverages the advantages of matrix computation to provide concise and efficient inference implementations. The code is licensed under the LGPL license and is open-sourced at $\href{//github.com/ml-stat-Sustech/TorchCP}{\text{this https URL}}$.
Large language models (LLMs) exhibit superior performance on various natural language tasks, but they are susceptible to issues stemming from outdated data and domain-specific limitations. In order to address these challenges, researchers have pursued two primary strategies, knowledge editing and retrieval augmentation, to enhance LLMs by incorporating external information from different aspects. Nevertheless, there is still a notable absence of a comprehensive survey. In this paper, we propose a review to discuss the trends in integration of knowledge and large language models, including taxonomy of methods, benchmarks, and applications. In addition, we conduct an in-depth analysis of different methods and point out potential research directions in the future. We hope this survey offers the community quick access and a comprehensive overview of this research area, with the intention of inspiring future research endeavors.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.