A pair of linear codes whose intersection is of dimension $\ell$, where $\ell$ is a non-negetive integer, is called an $\ell$-intersection pair of codes. This paper focuses on studying $\ell$-intersection pairs of $\lambda_i$-constacyclic, $i=1,2,$ and conjucyclic codes. We first characterize an $\ell$-intersection pair of $\lambda_i$-constacyclic codes. A formula for $\ell$ has been established in terms of the degrees of the generator polynomials of $\lambda_i$-constacyclic codes. This allows obtaining a condition for $\ell$-linear complementary pairs (LPC) of constacyclic codes. Later, we introduce and characterize the $\ell$-intersection pair of conjucyclic codes over $\mathbb{F}_{q^2}$. The first observation in the process is that there are no non-trivial linear conjucyclic codes over finite fields. So focus on the characterization of additive conjucyclic (ACC) codes. We show that the largest $\mathbb{F}_q$-subcode of an ACC code over $\mathbb{F}_{q^2}$ is cyclic and obtain its generating polynomial. This enables us to find the size of an ACC code. Furthermore, we discuss the trace code of an ACC code and show that it is cyclic. Finally, we determine $\ell$-intersection pairs of trace codes of ACC codes over $\mathbb{F}_4$.
This tutorial gives an advanced introduction to string diagrams and graph languages for higher-order computation. The subject matter develops in a principled way, starting from the two dimensional syntax of key categorical concepts such as functors, adjunctions, and strictification, and leading up to Cartesian Closed Categories, the core mathematical model of the lambda calculus and of functional programming languages. This methodology inverts the usual approach of proceeding from syntax to a categorical interpretation, by rationally reconstructing a syntax from the categorical model. The result is a graph syntax -- more precisely, a hierarchical hypergraph syntax -- which in many ways is shown to be an improvement over the conventional linear term syntax. The rest of the tutorial focuses on applications of interest to programming languages: operational semantics, general frameworks for type inference, and complex whole-program transformations such as closure conversion and automatic differentiation.
Higher-order regularization problem formulations are popular frameworks used in machine learning, inverse problems and image/signal processing. In this paper, we consider the computational problem of finding the minimizer of the Sobolev $\mathrm{W}^{1,p}$ semi-norm with a data-fidelity term. We propose a discretization procedure and prove convergence rates between our numerical solution and the target function. Our approach consists of discretizing an appropriate gradient flow problem in space and time. The space discretization is a nonlocal approximation of the p-Laplacian operator and our rates directly depend on the localization parameter $\epsilon_n$ and the time mesh-size $\tau_n$. We precisely characterize the asymptotic behaviour of $\epsilon_n$ and $\tau_n$ in order to ensure convergence to the considered minimizer. Finally, we apply our results to the setting of random graph models.
We study the performance of empirical risk minimization on the $p$-norm linear regression problem for $p \in (1, \infty)$. We show that, in the realizable case, under no moment assumptions, and up to a distribution-dependent constant, $O(d)$ samples are enough to exactly recover the target. Otherwise, for $p \in [2, \infty)$, and under weak moment assumptions on the target and the covariates, we prove a high probability excess risk bound on the empirical risk minimizer whose leading term matches, up to a constant that depends only on $p$, the asymptotically exact rate. We extend this result to the case $p \in (1, 2)$ under mild assumptions that guarantee the existence of the Hessian of the risk at its minimizer.
We study monotonicity testing of functions $f \colon \{0,1\}^d \to \{0,1\}$ using sample-based algorithms, which are only allowed to observe the value of $f$ on points drawn independently from the uniform distribution. A classic result by Bshouty-Tamon (J. ACM 1996) proved that monotone functions can be learned with $\exp(O(\min\{\frac{1}{\varepsilon}\sqrt{d},d\}))$ samples and it is not hard to show that this bound extends to testing. Prior to our work the only lower bound for this problem was $\Omega(\sqrt{\exp(d)/\varepsilon})$ in the small $\varepsilon$ parameter regime, when $\varepsilon = O(d^{-3/2})$, due to Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky (Combinatorica 2000). Thus, the sample complexity of monotonicity testing was wide open for $\varepsilon \gg d^{-3/2}$. We resolve this question, obtaining a tight lower bound of $\exp(\Omega(\min\{\frac{1}{\varepsilon}\sqrt{d},d\}))$ for all $\varepsilon$ at most a sufficiently small constant. In fact, we prove a much more general result, showing that the sample complexity of $k$-monotonicity testing and learning for functions $f \colon \{0,1\}^d \to [r]$ is $\exp(\Theta(\min\{\frac{rk}{\varepsilon}\sqrt{d},d\}))$. For testing with one-sided error we show that the sample complexity is $\exp(\Theta(d))$. Beyond the hypercube, we prove nearly tight bounds (up to polylog factors of $d,k,r,1/\varepsilon$ in the exponent) of $\exp(\widetilde{\Theta}(\min\{\frac{rk}{\varepsilon}\sqrt{d},d\}))$ on the sample complexity of testing and learning measurable $k$-monotone functions $f \colon \mathbb{R}^d \to [r]$ under product distributions. Our upper bound improves upon the previous bound of $\exp(\widetilde{O}(\min\{\frac{k}{\varepsilon^2}\sqrt{d},d\}))$ by Harms-Yoshida (ICALP 2022) for Boolean functions ($r=2$).
We study the question of which visibly pushdown languages (VPLs) are in the complexity class $\mathsf{AC}^0$ and how to effectively decide this question. Our contribution is to introduce a particular subclass of one-turn VPLs, called intermediate VPLs, for which the raised question is entirely unclear: to the best of our knowledge our research community is unaware of containment or non-containment in $\mathsf{AC}^0$ for any intermediate VPL. Our main result states that there is an algorithm that, given a visibly pushdown automaton, correctly outputs either that its language is in $\mathsf{AC}^0$, outputs some $m\geq 2$ such that $\mathsf{MOD}_m$ is constant-depth reducible to $L$ (implying that $L$ is not in $\mathsf{AC}^0$), or outputs a finite disjoint union of intermediate VPLs that $L$ is constant-depth equivalent to. In the latter case one can moreover effectively compute $k,l\in\mathbb{N}_{>0}$ with $k\not=l$ such that the concrete intermediate VPL $L(S\rightarrow\varepsilon\mid a c^{k-1} S b_1\mid ac^{l-1}Sb_2)$ is constant-depth reducible to the language $L$. Due to their particular nature we conjecture that either all intermediate VPLs are in $\mathsf{AC}^0$ or all are not. As a corollary of our main result we obtain that in case the input language is a visibly counter language our algorithm can effectively determine if it is in $\mathsf{AC}^0$ -- hence our main result generalizes a result by Krebs et al. stating that it is decidable if a given visibly counter language is in $\mathsf{AC}^0$ (when restricted to well-matched words). For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are closely related to forest algebras (introduced by Boja\'nczyk and Walukiewicz), and use Green's relations.
We propose CAPGrasp, an $\mathbb{R}^3\times \text{SO(2)-equivariant}$ 6-DoF continuous approach-constrained generative grasp sampler. It includes a novel learning strategy for training CAPGrasp that eliminates the need to curate massive conditionally labeled datasets and a constrained grasp refinement technique that improves grasp poses while respecting the grasp approach directional constraints. The experimental results demonstrate that CAPGrasp is more than three times as sample efficient as unconstrained grasp samplers while achieving up to 38% grasp success rate improvement. CAPGrasp also achieves 4-10% higher grasp success rates than constrained but noncontinuous grasp samplers. Overall, CAPGrasp is a sample-efficient solution when grasps must originate from specific directions, such as grasping in confined spaces.
Interpolatory necessary optimality conditions for $\mathcal{H}_2$-optimal reduced-order modeling of unstructured linear time-invariant (LTI) systems are well-known. Based on previous work on $\mathcal{L}_2$-optimal reduced-order modeling of stationary parametric problems, in this paper we develop and investigate optimality conditions for $\mathcal{H}_2$-optimal reduced-order modeling of structured LTI systems, in particular, for second-order, port-Hamiltonian, and time-delay systems. We show that across all these different structured settings, bitangential Hermite interpolation is the common form for optimality, thus proving a unifying optimality framework for structured reduced-order modeling.
We generalized a modified exponentialized estimator by pushing the robust-optimal (RO) index $\lambda$ to $-\infty$ for achieving robustness to outliers by optimizing a quasi-Minimin function. The robustness is realized and controlled adaptively by the RO index without any predefined threshold. Optimality is guaranteed by expansion of the convexity region in the Hessian matrix to largely avoid local optima. Detailed quantitative analysis on both robustness and optimality are provided. The results of proposed experiments on fitting tasks for three noisy non-convex functions and the digits recognition task on the MNIST dataset consolidate the conclusions.
This paper considers correlation clustering on unweighted complete graphs. We give a combinatorial algorithm that returns a single clustering solution that is simultaneously $O(1)$-approximate for all $\ell_p$-norms of the disagreement vector. This proves that minimal sacrifice is needed in order to optimize different norms of the disagreement vector. Our algorithm is the first combinatorial approximation algorithm for the $\ell_2$-norm objective, and more generally the first combinatorial algorithm for the $\ell_p$-norm objective when $2 \leq p < \infty$. It is also faster than all previous algorithms that minimize the $\ell_p$-norm of the disagreement vector, with run-time $O(n^\omega)$, where $O(n^\omega)$ is the time for matrix multiplication on $n \times n$ matrices. When the maximum positive degree in the graph is at most $\Delta$, this can be improved to a run-time of $O(n\Delta^2 \log n)$.
A class $\mathcal F$ of graphs is $\chi$-bounded if there is a function $f$ such that $\chi(H)\le f(\omega(H))$ for all induced subgraphs $H$ of a graph in $\mathcal F$. If $f$ can be chosen to be a polynomial, we say that $\mathcal F$ is polynomially $\chi$-bounded. Esperet proposed a conjecture that every $\chi$-bounded class of graphs is polynomially $\chi$-bounded. This conjecture has been disproved; it has been shown that there are classes of graphs that are $\chi$-bounded but not polynomially $\chi$-bounded. Nevertheless, inspired by Esperet's conjecture, we introduce Pollyanna classes of graphs. A class $\mathcal C$ of graphs is Pollyanna if $\mathcal C\cap \mathcal F$ is polynomially $\chi$-bounded for every $\chi$-bounded class $\mathcal F$ of graphs. We prove that several classes of graphs are Pollyanna and also present some proper classes of graphs that are not Pollyanna.