亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The global minimum point of an optimization problem is of interest in engineering fields and it is difficult to be solved, especially for a nonconvex large-scale optimization problem. In this article, we consider a new memetic algorithm for this problem. That is to say, we use the determined points (the stationary points of the function) as the initial seeds of the evolutionary algorithm, other than the random initial seeds of the known evolutionary algorithms. Firstly, we revise the continuation Newton method with the deflation technique to find the stationary points from several determined initial points as many as possible. Then, we use those found stationary points as the initial evolutionary seeds of the quasi-genetic algorithm. After it evolves into several generations, we obtain a suboptimal point of the optimization problem. Finally, we use the continuation Newton method with this suboptimal point as the initial point to obtain the stationary point, and output the minimizer between this final stationary point and the found suboptimal point of the quasi-genetic algorithm.Finally, we compare it with the multi-start method (the built-in subroutine GlobalSearch.m of the MATLAB R2020a environment), the differential evolution algorithm (the DE method, the subroutine de.m of the MATLAB Central File Exchange 2021) and the branch-and-bound method (Couenne of a state-of-the-art open source solver for mixed integer nonlinear programming problems), respectively. Numerical results show that the proposed method performs well for the large-scale global optimization problems, especially the problems of which are difficult to be solved by the known global optimization methods.

相關內容

Higher-order time integration methods that unconditionally preserve the positivity and linear invariants of the underlying differential equation system cannot belong to the class of general linear methods. This poses a major challenge for the stability analysis of such methods since the new iterate depends nonlinearly on the current iterate. Moreover, for linear systems, the existence of linear invariants is always associated with zero eigenvalues, so that steady states of the continuous problem become non-hyperbolic fixed points of the numerical time integration scheme. Altogether, the stability analysis of such methods requires the investigation of non-hyperbolic fixed points for general nonlinear iterations. Based on the center manifold theory for maps we present a theorem for the analysis of the stability of non-hyperbolic fixed points of time integration schemes applied to problems whose steady states form a subspace. This theorem provides sufficient conditions for both the stability of the method and the local convergence of the iterates to the steady state of the underlying initial value problem. This theorem is then used to prove the unconditional stability of the MPRK22($\alpha$)-family of modified Patankar-Runge-Kutta schemes when applied to arbitrary positive and conservative linear systems of differential equations. The theoretical results are confirmed by numerical experiments.

We consider the complexity of computing Chow forms and their generalization to multiprojective spaces. We develop a deterministic algorithm using resultants, and obtain a single exponential complexity upper bound. Earlier computational results for Chow forms were in the arithmetic complexity model; our result represents the first Boolean complexity bound. We also extend our algorithm to multiprojective Chow forms and obtain the first computational result in this setting. The motivation for our work comes from incidence geometry where intriguing problems for computational algebraists remain open.

The time-ordered exponential is defined as the function that solves a system of coupled first-order linear differential equations with generally non-constant coefficients. In spite of being at the heart of much system dynamics, control theory, and model reduction problems, the time-ordered exponential function remains elusively difficult to evaluate. The *-Lanczos algorithm is a (symbolic) algorithm capable of evaluating it by producing a tridiagonalization of the original differential system. In this paper, we explain how the *-Lanczos algorithm is built from a generalization of Krylov subspaces, and we prove crucial properties, such as the matching moment property. A strategy for its numerical implementation is also outlined and will be subject of future investigation.

In this paper we address the problem of constructing $G^2$ planar Pythagorean--hodograph (PH) spline curves, that interpolate points, tangent directions and curvatures, and have prescribed arc-length. The interpolation scheme is completely local. Each spline segment is defined as a PH biarc curve of degree $7$, which results in having a closed form solution of the $G^2$ interpolation equations depending on four free parameters. By fixing two of them to zero, it is proven that the length constraint can be satisfied for any data and any chosen ratio between the two boundary tangents. Length interpolation equation reduces to one algebraic equation with four solutions in general. To select the best one, the value of the bending energy is observed. Several numerical examples are provided to illustrate the obtained theoretical results and to numerically confirm that the approximation order is $5$.

We establish a novel convergent iteration framework for a weak approximation of general switching diffusion. The key theoretical basis of the proposed approach is a restriction of the maximum number of switching so as to untangle and compensate a challenging system of weakly coupled partial differential equations to a collection of independent partial differential equations, for which a variety of accurate and efficient numerical methods are available. Upper and lower bounding functions for the solutions are constructed using the iterative approximate solutions. We provide a rigorous convergence analysis for the iterative approximate solutions, as well as for the upper and lower bounding functions. Numerical results are provided to examine our theoretical findings and the effectiveness of the proposed framework.

Stochastic optimisation problems minimise expectations of random cost functions. We use 'optimise then discretise' method to solve stochastic optimisation. In our approach, accurate quadrature methods are required to calculate the objective, gradient or Hessian which are in fact integrals. We apply the dimension-adaptive sparse grid quadrature to approximate these integrals when the problem is high dimensional. Dimension-adaptive sparse grid quadrature shows high accuracy and efficiency in computing an integral with a smooth integrand. It is a kind of generalisation of the classical sparse grid method, which refines different dimensions according to their importance. We show that the dimension-adaptive sparse grid quadrature has better performance in the optimise then discretise' method than the 'discretise then optimise' method.

This paper addresses a backward heat conduction problem with fractional Laplacian and time-dependent coefficient in an unbounded domain. The problem models generalized diffusion processes and is well-known to be severely ill-posed. We investigate a simple and powerful variational regularization technique based on mollification. Under classical Sobolev smoothness conditions, we derive order-optimal convergence rates between the exact solution and regularized approximation in the practical case where both the data and the operator are noisy. Moreover, we propose an order-optimal a-posteriori parameter choice rule based on the Morozov principle. Finally, we illustrate the robustness and efficiency of the regularization technique by some numerical examples including image deblurring.

We study the use of inverse harmonic Rayleigh quotients with target for the stepsize selection in gradient methods for nonlinear unconstrained optimization problems. This provides not only an elegant and flexible framework to parametrize and reinterpret existing stepsize schemes, but also gives inspiration for new flexible and tunable families of steplengths. In particular, we analyze and extend the adaptive Barzilai-Borwein method to a new family of stepsizes. While this family exploits negative values for the target, we also consider positive targets. We present a convergence analysis for quadratic problems extending results by Dai and Liao (2002), and carry out experiments outlining the potential of the approaches.

This paper is devoted to the numerical analysis of a piecewise constant discontinuous Galerkin method for time fractional subdiffusion problems. The regularity of weak solution is firstly established by using variational approach and Mittag-Leffler function. Then several optimal error estimates are derived with low regularity data. Finally, numerical experiments are conducted to verify the theoretical results.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

北京阿比特科技有限公司