Visual tracking often faces challenges such as invalid targets and decreased performance in low-light conditions when relying solely on RGB image sequences. While incorporating additional modalities like depth and infrared data has proven effective, existing multi-modal imaging platforms are complex and lack real-world applicability. In contrast, near-infrared (NIR) imaging, commonly used in surveillance cameras, can switch between RGB and NIR based on light intensity. However, tracking objects across these heterogeneous modalities poses significant challenges, particularly due to the absence of modality switch signals during tracking. To address these challenges, we propose an adaptive cross-modal object tracking algorithm called Modality-Aware Fusion Network (MAFNet). MAFNet efficiently integrates information from both RGB and NIR modalities using an adaptive weighting mechanism, effectively bridging the appearance gap and enabling a modality-aware target representation. It consists of two key components: an adaptive weighting module and a modality-specific representation module......
Engineering change orders (ECOs) in late stages make minimal design fixes to recover from timing shifts due to excessive IR drops. This paper integrates IR-drop-aware timing analysis and ECO timing optimization using reinforcement learning (RL). The method operates after physical design and power grid synthesis, and rectifies IR-drop-induced timing degradation through gate sizing. It incorporates the Lagrangian relaxation (LR) technique into a novel RL framework, which trains a relational graph convolutional network (R-GCN) agent to sequentially size gates to fix timing violations. The R-GCN agent outperforms a classical LR-only algorithm: in an open 45nm technology, it (a) moves the Pareto front of the delay-area tradeoff curve to the left and (b) saves runtime over the classical method by running fast inference using trained models at iso-quality. The RL model is transferable across timing specifications, and transferable to unseen designs with zero-shot learning or fine tuning.
Face swapping has gained significant attention for its varied applications. The majority of previous face swapping approaches have relied on the seesaw game training scheme, which often leads to the instability of the model training and results in undesired samples with blended identities due to the target identity leakage problem. This paper introduces the Shape Agnostic Masked AutoEncoder (SAMAE) training scheme, a novel self-supervised approach designed to enhance face swapping model training. Our training scheme addresses the limitations of traditional training methods by circumventing the conventional seesaw game and introducing clear ground truth through its self-reconstruction training regime. It effectively mitigates identity leakage by masking facial regions of the input images and utilizing learned disentangled identity and non-identity features. Additionally, we tackle the shape misalignment problem with new techniques including perforation confusion and random mesh scaling, and establishes a new state-of-the-art, surpassing other baseline methods, preserving both identity and non-identity attributes, without sacrificing on either aspect.
Ensuring robustness in face recognition systems across various challenging conditions is crucial for their versatility. State-of-the-art methods often incorporate additional information, such as depth, thermal, or angular data, to enhance performance. However, light field-based face recognition approaches that leverage angular information face computational limitations. This paper investigates the fundamental trade-off between spatio-angular resolution in light field representation to achieve improved face recognition performance. By utilizing macro-pixels with varying angular resolutions while maintaining the overall image size, we aim to quantify the impact of angular information at the expense of spatial resolution, while considering computational constraints. Our experimental results demonstrate a notable performance improvement in face recognition systems by increasing the angular resolution, up to a certain extent, at the cost of spatial resolution.
This paper proposes a speech rhythm-based method for speaker embeddings to model phoneme duration using a few utterances by the target speaker. Speech rhythm is one of the essential factors among speaker characteristics, along with acoustic features such as F0, for reproducing individual utterances in speech synthesis. A novel feature of the proposed method is the rhythm-based embeddings extracted from phonemes and their durations, which are known to be related to speaking rhythm. They are extracted with a speaker identification model similar to the conventional spectral feature-based one. We conducted three experiments, speaker embeddings generation, speech synthesis with generated embeddings, and embedding space analysis, to evaluate the performance. The proposed method demonstrated a moderate speaker identification performance (15.2% EER), even with only phonemes and their duration information. The objective and subjective evaluation results demonstrated that the proposed method can synthesize speech with speech rhythm closer to the target speaker than the conventional method. We also visualized the embeddings to evaluate the relationship between the distance of the embeddings and the perceptual similarity. The visualization of the embedding space and the relation analysis between the closeness indicated that the distribution of embeddings reflects the subjective and objective similarity.
Diffusion models have enabled remarkably high-quality medical image generation, which can help mitigate the expenses of acquiring and annotating new images by supplementing small or imbalanced datasets, along with other applications. However, these are hampered by the challenge of enforcing global anatomical realism in generated images. To this end, we propose a diffusion model for anatomically-controlled medical image generation. Our model follows a multi-class anatomical segmentation mask at each sampling step and incorporates a \textit{random mask ablation} training algorithm, to enable conditioning on a selected combination of anatomical constraints while allowing flexibility in other anatomical areas. This also improves the network's learning of anatomical realism for the completely unconditional (unconstrained generation) case. Comparative evaluation on breast MRI and abdominal/neck-to-pelvis CT datasets demonstrates superior anatomical realism and input mask faithfulness over state-of-the-art models. We also offer an accessible codebase and release a dataset of generated paired breast MRIs. Our approach facilitates diverse applications, including pre-registered image generation, counterfactual scenarios, and others.
Achieving state-of-the-art results in face verification systems typically hinges on the availability of labeled face training data, a resource that often proves challenging to acquire in substantial quantities. In this research endeavor, we proposed employing Siamese networks for face recognition, eliminating the need for labeled face images. We achieve this by strategically leveraging negative samples alongside nearest neighbor counterparts, thereby establishing positive and negative pairs through an unsupervised methodology. The architectural framework adopts a VGG encoder, trained as a double branch siamese network. Our primary aim is to circumvent the necessity for labeled face image data, thus proposing the generation of training pairs in an entirely unsupervised manner. Positive training data are selected within a dataset based on their highest cosine similarity scores with a designated anchor, while negative training data are culled in a parallel fashion, though drawn from an alternate dataset. During training, the proposed siamese network conducts binary classification via cross-entropy loss. Subsequently, during the testing phase, we directly extract face verification scores from the network's output layer. Experimental results reveal that the proposed unsupervised system delivers a performance on par with a similar but fully supervised baseline.
This paper tackles the problem of motion deblurring of dynamic scenes. Although end-to-end fully convolutional designs have recently advanced the state-of-the-art in non-uniform motion deblurring, their performance-complexity trade-off is still sub-optimal. Most existing approaches achieve a large receptive field by increasing the number of generic convolution layers and kernel size. In this work, we propose a pixel adaptive and feature attentive design for handling large blur variations across different spatial locations and process each test image adaptively. We design a content-aware global-local filtering module that significantly improves performance by considering not only global dependencies but also by dynamically exploiting neighboring pixel information. We further introduce a pixel-adaptive non-uniform sampling strategy that implicitly discovers the difficult-to-restore regions present in the image and, in turn, performs fine-grained refinement in a progressive manner. Extensive qualitative and quantitative comparisons with prior art on deblurring benchmarks demonstrate that our approach performs favorably against the state-of-the-art deblurring algorithms.
Analyzing and training 3D body posture models depend heavily on the availability of joint labels that are commonly acquired through laborious manual annotation of body joints or via marker-based joint localization using carefully curated markers and capturing systems. However, such annotations are not always available, especially for people performing unusual activities. In this paper, we propose an algorithm that learns to discover 3D keypoints on human bodies from multiple-view images without any supervision or labels other than the constraints multiple-view geometry provides. To ensure that the discovered 3D keypoints are meaningful, they are re-projected to each view to estimate the person's mask that the model itself has initially estimated without supervision. Our approach discovers more interpretable and accurate 3D keypoints compared to other state-of-the-art unsupervised approaches on Human3.6M and MPI-INF-3DHP benchmark datasets.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.