亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in robotic mobile manipulation have spurred the expansion of the operating environment for robots from constrained workspaces to large-scale, human environments. In order to effectively complete tasks in these spaces, robots must be able to perceive, reason, and execute over a diversity of affordances, well beyond simple pick-and-place. We posit the notion of semantic frames provides a compelling representation for robot actions that is amenable to action-focused perception, task-level reasoning, action-level execution, and integration with language. Semantic frames, a product of the linguistics community, define the necessary elements, pre- and post- conditions, and a set of sequential robot actions necessary to successfully execute an action evoked by a verb phrase. In this work, we extend the semantic frame representation for robot manipulation actions and introduce the problem of Semantic Frame Execution And Localization for Perceiving Afforded Robot Actions (SEAL) as a graphical model. For the SEAL problem, we describe our nonparametric Semantic Frame Mapping (SeFM) algorithm for maintaining belief over a finite set of semantic frames as the locations of actions afforded to the robot. We show that language models such as GPT-3 are insufficient to address generalized task execution covered by the SEAL formulation and SeFM provides robots with efficient search strategies and long term memory needed when operating in building-scale environments.

相關內容

機器人(英語:Robot)包括一切模擬人類行為或思想與模擬其他生物的機械(如機器狗,機器貓等)。狹義上對機器人的定義還有很多分類法及爭議,有些電腦程序甚至也被稱為機器人。在當代工業中,機器人指能自動運行任務的人造機器設備,用以取代或協助人類工作,一般會是機電設備,由計算機程序或是電子電路控制。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

We study formal languages which are capable of fully expressing quantitative probabilistic reasoning and do-calculus reasoning for causal effects, from a computational complexity perspective. We focus on satisfiability problems whose instance formulas allow expressing many tasks in probabilistic and causal inference. The main contribution of this work is establishing the exact computational complexity of these satisfiability problems. We introduce a new natural complexity class, named succ$\exists$R, which can be viewed as a succinct variant of the well-studied class $\exists$R, and show that the problems we consider are complete for succ$\exists$R. Our results imply even stronger algorithmic limitations than were proven by Fagin, Halpern, and Megiddo (1990) and Moss\'{e}, Ibeling, and Icard (2022) for some variants of the standard languages used commonly in probabilistic and causal inference.

Determining multi-robot motion policies for persistently monitoring a region with limited sensing, communication, and localization constraints in non-GPS environments is a challenging problem. To take the localization constraints into account, in this paper, we consider a heterogeneous robotic system consisting of two types of agents: anchor agents with accurate localization capability and auxiliary agents with low localization accuracy. To localize itself, the auxiliary agents must be within the communication range of an {anchor}, directly or indirectly. The robotic team's objective is to minimize environmental uncertainty through persistent monitoring. We propose a multi-agent deep reinforcement learning (MARL) based architecture with graph convolution called Graph Localized Proximal Policy Optimization (GALOPP), which incorporates the limited sensor field-of-view, communication, and localization constraints of the agents along with persistent monitoring objectives to determine motion policies for each agent. We evaluate the performance of GALOPP on open maps with obstacles having a different number of anchor and auxiliary agents. We further study (i) the effect of communication range, obstacle density, and sensing range on the performance and (ii) compare the performance of GALOPP with non-RL baselines, namely, greedy search, random search, and random search with communication constraint. For its generalization capability, we also evaluated GALOPP in two different environments -- 2-room and 4-room. The results show that GALOPP learns the policies and monitors the area well. As a proof-of-concept, we perform hardware experiments to demonstrate the performance of GALOPP.

Imitation is a key component of human social behavior, and is widely used by both children and adults as a way to navigate uncertain or unfamiliar situations. But in an environment populated by multiple heterogeneous agents pursuing different goals or objectives, indiscriminate imitation is unlikely to be an effective strategy -- the imitator must instead determine who is most useful to copy. There are likely many factors that play into these judgements, depending on context and availability of information. Here we investigate the hypothesis that these decisions involve inferences about other agents' reward functions. We suggest that people preferentially imitate the behavior of others they deem to have similar reward functions to their own. We further argue that these inferences can be made on the basis of very sparse or indirect data, by leveraging an inductive bias toward positing the existence of different \textit{groups} or \textit{types} of people with similar reward functions, allowing learners to select imitation targets without direct evidence of alignment.

Despite recent interest in open domain question answering (ODQA) over tables, many studies still rely on datasets that are not truly optimal for the task with respect to utilizing structural nature of table. These datasets assume answers reside as a single cell value and do not necessitate exploring over multiple cells such as aggregation, comparison, and sorting. Thus, we release Open-WikiTable, the first ODQA dataset that requires complex reasoning over tables. Open-WikiTable is built upon WikiSQL and WikiTableQuestions to be applicable in the open-domain setting. As each question is coupled with both textual answers and SQL queries, Open-WikiTable opens up a wide range of possibilities for future research, as both reader and parser methods can be applied. The dataset and code are publicly available.

With the rapid progress in Multi-Agent Path Finding (MAPF), researchers have studied how MAPF algorithms can be deployed to coordinate hundreds of robots in large automated warehouses. While most works try to improve the throughput of such warehouses by developing better MAPF algorithms, we focus on improving the throughput by optimizing the warehouse layout. We show that, even with state-of-the-art MAPF algorithms, commonly used human-designed layouts can lead to congestion for warehouses with large numbers of robots and thus have limited scalability. We extend existing automatic scenario generation methods to optimize warehouse layouts. Results show that our optimized warehouse layouts (1) reduce traffic congestion and thus improve throughput, (2) improve the scalability of the automated warehouses by doubling the number of robots in some cases, and (3) are capable of generating layouts with user-specified diversity measures. We include the source code at: //github.com/lunjohnzhang/warehouse_env_gen_public

Deadlocks are one of the most notorious concurrency bugs, and significant research has focused on detecting them efficiently. Dynamic predictive analyses work by observing concurrent executions, and reason about alternative interleavings that can witness concurrency bugs. Such techniques offer scalability and sound bug reports, and have emerged as an effective approach for concurrency bug detection, such as data races. Effective dynamic deadlock prediction, however, has proven a challenging task, as no deadlock predictor currently meets the requirements of soundness, high-precision, and efficiency. In this paper, we first formally establish that this tradeoff is unavoidable, by showing that (a) sound and complete deadlock prediction is intractable, in general, and (b) even the seemingly simpler task of determining the presence of potential deadlocks, which often serve as unsound witnesses for actual predictable deadlocks, is intractable. The main contribution of this work is a new class of predictable deadlocks, called sync(hronization)-preserving deadlocks. Informally, these are deadlocks that can be predicted by reordering the observed execution while preserving the relative order of conflicting critical sections. We present two algorithms for sound deadlock prediction based on this notion. Our first algorithm SPDOffline detects all sync-preserving deadlocks, with running time that is linear per abstract deadlock pattern, a novel notion also introduced in this work. Our second algorithm SPDOnline predicts all sync-preserving deadlocks that involve two threads in a strictly online fashion, runs in overall linear time, and is better suited for a runtime monitoring setting. We implemented both our algorithms and evaluated their ability to perform offline and online deadlock-prediction on a large dataset of standard benchmarks.

3D spatial perception is the problem of building and maintaining an actionable and persistent representation of the environment in real-time using sensor data and prior knowledge. Despite the fast-paced progress in robot perception, most existing methods either build purely geometric maps (as in traditional SLAM) or flat metric-semantic maps that do not scale to large environments or large dictionaries of semantic labels. The first part of this paper is concerned with representations: we show that scalable representations for spatial perception need to be hierarchical in nature. Hierarchical representations are efficient to store, and lead to layered graphs with small treewidth, which enable provably efficient inference. We then introduce an example of hierarchical representation for indoor environments, namely a 3D scene graph, and discuss its structure and properties. The second part of the paper focuses on algorithms to incrementally construct a 3D scene graph as the robot explores the environment. Our algorithms combine 3D geometry, topology (to cluster the places into rooms), and geometric deep learning (e.g., to classify the type of rooms the robot is moving across). The third part of the paper focuses on algorithms to maintain and correct 3D scene graphs during long-term operation. We propose hierarchical descriptors for loop closure detection and describe how to correct a scene graph in response to loop closures, by solving a 3D scene graph optimization problem. We conclude the paper by combining the proposed perception algorithms into Hydra, a real-time spatial perception system that builds a 3D scene graph from visual-inertial data in real-time. We showcase Hydra's performance in photo-realistic simulations and real data collected by a Clearpath Jackal robots and a Unitree A1 robot. We release an open-source implementation of Hydra at //github.com/MIT-SPARK/Hydra.

This paper aims to quantitatively evaluate the performance of ChatGPT, an interactive large language model, on inter-sentential relations such as temporal relations, causal relations, and discourse relations. Given ChatGPT's promising performance across various tasks, we conduct extensive evaluations on the whole test sets of 13 datasets, including temporal and causal relations, PDTB2.0-based and dialogue-based discourse relations, and downstream applications on discourse understanding. To achieve reliable results, we adopt three tailored prompt templates for each task, including the zero-shot prompt template, zero-shot prompt engineering (PE) template, and in-context learning (ICL) prompt template, to establish the initial baseline scores for all popular sentence-pair relation classification tasks for the first time. We find that ChatGPT exhibits strong performance in detecting and reasoning about causal relations, while it may not be proficient in identifying the temporal order between two events. It can recognize most discourse relations with existing explicit discourse connectives, but the implicit discourse relation still remains a challenging task. Meanwhile, ChatGPT performs poorly in the dialogue discourse parsing task that requires structural understanding in a dialogue before being aware of the discourse relation.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.

北京阿比特科技有限公司