Recently, there has been a significant amount of interest in satellite telemetry anomaly detection (AD) using neural networks (NN). For AD purposes, the current approaches focus on either forecasting or reconstruction of the time series, and they cannot measure the level of reliability or the probability of correct detection. Although the Bayesian neural network (BNN)-based approaches are well known for time series uncertainty estimation, they are computationally intractable. In this paper, we present a tractable approximation for BNN based on the Monte Carlo (MC) dropout method for capturing the uncertainty in the satellite telemetry time series, without sacrificing accuracy. For time series forecasting, we employ an NN, which consists of several Long Short-Term Memory (LSTM) layers followed by various dense layers. We employ the MC dropout inside each LSTM layer and before the dense layers for uncertainty estimation. With the proposed uncertainty region and by utilizing a post-processing filter, we can effectively capture the anomaly points. Numerical results show that our proposed time series AD approach outperforms the existing methods from both prediction accuracy and AD perspectives.
Anomaly detection is critical for finding suspicious behavior in innumerable systems. We need to detect anomalies in real-time, i.e. determine if an incoming entity is anomalous or not, as soon as we receive it, to minimize the effects of malicious activities and start recovery as soon as possible. Therefore, online algorithms that can detect anomalies in a streaming manner are essential. We first propose MIDAS which uses a count-min sketch to detect anomalous edges in dynamic graphs in an online manner, using constant time and memory. We then propose two variants, MIDAS-R which incorporates temporal and spatial relations, and MIDAS-F which aims to filter away anomalous edges to prevent them from negatively affecting the internal data structures. We then extend the count-min sketch to a Higher-Order sketch to capture complex relations in graph data, and to reduce detecting suspicious dense subgraph problem to finding a dense submatrix in constant time. Using this sketch, we propose four streaming methods to detect edge and subgraph anomalies. Next, we broaden the graph setting to multi-aspect data. We propose MStream which detects explainable anomalies in multi-aspect data streams. We further propose MStream-PCA, MStream-IB, and MStream-AE to incorporate correlation between features. Finally, we consider multi-dimensional data streams with concept drift and propose MemStream. MemStream leverages the power of a denoising autoencoder to learn representations and a memory module to learn the dynamically changing trend in data without the need for labels. We prove a theoretical bound on the size of memory for effective drift handling. In addition, we allow quick retraining when the arriving stream becomes sufficiently different from the training data. Furthermore, MemStream makes use of two architecture design choices to be robust to memory poisoning.
We study first-order methods with preconditioning for solving structured nonlinear convex optimization problems. We propose a new family of preconditioners generated by symmetric polynomials. They provide first-order optimization methods with a provable improvement of the condition number, cutting the gaps between highest eigenvalues, without explicit knowledge of the actual spectrum. We give a stochastic interpretation of this preconditioning in terms of coordinate volume sampling and compare it with other classical approaches, including the Chebyshev polynomials. We show how to incorporate a polynomial preconditioning into the Gradient and Fast Gradient Methods and establish the corresponding global complexity bounds. Finally, we propose a simple adaptive search procedure that automatically chooses the best possible polynomial preconditioning for the Gradient Method, minimizing the objective along a low-dimensional Krylov subspace. Numerical experiments confirm the efficiency of our preconditioning strategies for solving various machine learning problems.
Detecting anomalies in multivariate time series(MTS) data plays an important role in many domains. The abnormal values could indicate events, medical abnormalities,cyber-attacks, or faulty devices which if left undetected could lead to significant loss of resources, capital, or human lives. In this paper, we propose a novel and innovative approach to anomaly detection called Bayesian State-Space Anomaly Detection(BSSAD). The BSSAD consists of two modules: the neural network module and the Bayesian state-space module. The design of our approach combines the strength of Bayesian state-space algorithms in predicting the next state and the effectiveness of recurrent neural networks and autoencoders in understanding the relationship between the data to achieve high accuracy in detecting anomalies. The modular design of our approach allows flexibility in implementation with the option of changing the parameters of the Bayesian state-space models or swap-ping neural network algorithms to achieve different levels of performance. In particular, we focus on using Bayesian state-space models of particle filters and ensemble Kalman filters. We conducted extensive experiments on five different datasets. The experimental results show the superior performance of our model over baselines, achieving an F1-score greater than 0.95. In addition, we also propose using a metric called MatthewCorrelation Coefficient (MCC) to obtain more comprehensive information about the accuracy of anomaly detection.
Although industrial anomaly detection (AD) technology has made significant progress in recent years, generating realistic anomalies and learning priors knowledge of normal remain challenging tasks. In this study, we propose an end-to-end industrial anomaly segmentation method called FractalAD. Training samples are obtained by synthesizing fractal images and patches from normal samples. This fractal anomaly generation method is designed to sample the full morphology of anomalies. Moreover, we designed a backbone knowledge distillation structure to extract prior knowledge contained in normal samples. The differences between a teacher and a student model are converted into anomaly attention using a cosine similarity attention module. The proposed method enables an end-to-end semantic segmentation network to be used for anomaly detection without adding any trainable parameters to the backbone and segmentation head. The results of ablation studies confirmed the effectiveness of fractal anomaly generation and backbone knowledge distillation. The results of performance experiments showed that FractalAD achieved competitive results on the MVTec AD dataset compared with other state-of-the-art anomaly detection methods.
Local search is an effective method for solving large-scale combinatorial optimization problems, and it has made remarkable progress in recent years through several subtle mechanisms. In this paper, we found two ways to improve the local search algorithms in solving Pseudo-Boolean Optimization(PBO): Firstly, some of those mechanisms such as unit propagation are merely used in solving MaxSAT before, which can be generalized to solve PBO as well; Secondly, the existing local search algorithms utilize the heuristic on variables, so-called score, to mainly guide the search. We attempt to gain more insights into the clause, as it plays the role of a middleman who builds a bridge between variables and the given formula. Hence, we first extended the combination of unit propagation-based decimation algorithm to PBO problem, giving a further generalized definition of unit clause for PBO problem, and apply it to the existing solver LS-PBO for constructing an initial assignment; then, we introduced a new heuristic on clauses, dubbed care, to set a higher priority for the clauses that are less satisfied in current iterations. Experiments on three real-world application benchmarks including minimum-width confidence band, wireless sensor network optimization, and seating arrangement problems show that our algorithm DeciLS-PBO has a promising performance compared to the state-of-the-art algorithms.
Learning in neural networks is often framed as a problem in which targeted error signals are directly propagated to parameters and used to produce updates that induce more optimal network behaviour. Backpropagation of error (BP) is an example of such an approach and has proven to be a highly successful application of stochastic gradient descent to deep neural networks. We propose constrained parameter inference (COPI) as a new principle for learning. The COPI approach assumes that learning can be set up in a manner where parameters infer their own values based upon observations of their local neuron activities. We find that this estimation of network parameters is possible under the constraints of decorrelated neural inputs and top-down perturbations of neural states for credit assignment. We show that the decorrelation required for COPI allows learning at extremely high learning rates, competitive with that of adaptive optimizers, as used by BP. We further demonstrate that COPI affords a new approach to feature analysis and network compression. Finally, we argue that COPI may shed new light on learning in biological networks given the evidence for decorrelation in the brain.
Personalised federated learning (FL) aims at collaboratively learning a machine learning model taylored for each client. Albeit promising advances have been made in this direction, most of existing approaches works do not allow for uncertainty quantification which is crucial in many applications. In addition, personalisation in the cross-device setting still involves important issues, especially for new clients or those having small number of observations. This paper aims at filling these gaps. To this end, we propose a novel methodology coined FedPop by recasting personalised FL into the population modeling paradigm where clients' models involve fixed common population parameters and random effects, aiming at explaining data heterogeneity. To derive convergence guarantees for our scheme, we introduce a new class of federated stochastic optimisation algorithms which relies on Markov chain Monte Carlo methods. Compared to existing personalised FL methods, the proposed methodology has important benefits: it is robust to client drift, practical for inference on new clients, and above all, enables uncertainty quantification under mild computational and memory overheads. We provide non-asymptotic convergence guarantees for the proposed algorithms and illustrate their performances on various personalised federated learning tasks.
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.