亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work studies algorithms for learning from aggregate responses. We focus on the construction of aggregation sets (called bags in the literature) for event-level loss functions. We prove for linear regression and generalized linear models (GLMs) that the optimal bagging problem reduces to one-dimensional size-constrained $k$-means clustering. Further, we theoretically quantify the advantage of using curated bags over random bags. We then propose the PriorBoost algorithm, which adaptively forms bags of samples that are increasingly homogeneous with respect to (unobserved) individual responses to improve model quality. We study label differential privacy for aggregate learning, and we also provide extensive experiments showing that PriorBoost regularly achieves optimal model quality for event-level predictions, in stark contrast to non-adaptive algorithms.

相關內容

Trajectory length stands as a crucial hyperparameter within reinforcement learning (RL) algorithms, significantly contributing to the sample inefficiency in robotics applications. Motivated by the pivotal role trajectory length plays in the training process, we introduce Ada-NAV, a novel adaptive trajectory length scheme designed to enhance the training sample efficiency of RL algorithms in robotic navigation tasks. Unlike traditional approaches that treat trajectory length as a fixed hyperparameter, we propose to dynamically adjust it based on the entropy of the underlying navigation policy. Interestingly, Ada-NAV can be applied to both existing on-policy and off-policy RL methods, which we demonstrate by empirically validating its efficacy on three popular RL methods: REINFORCE, Proximal Policy Optimization (PPO), and Soft Actor-Critic (SAC). We demonstrate through simulated and real-world robotic experiments that Ada-NAV outperforms conventional methods that employ constant or randomly sampled trajectory lengths. Specifically, for a fixed sample budget, Ada-NAV achieves an 18\% increase in navigation success rate, a 20-38\% reduction in navigation path length, and a 9.32\% decrease in elevation costs. Furthermore, we showcase the versatility of Ada-NAV by integrating it with the Clearpath Husky robot, illustrating its applicability in complex outdoor environments.

Multi-task robot learning holds significant importance in tackling diverse and complex scenarios. However, current approaches are hindered by performance issues and difficulties in collecting training datasets. In this paper, we propose GeRM (Generalist Robotic Model). We utilize offline reinforcement learning to optimize data utilization strategies to learn from both demonstrations and sub-optimal data, thus surpassing the limitations of human demonstrations. Thereafter, we employ a transformer-based VLA network to process multi-modal inputs and output actions. By introducing the Mixture-of-Experts structure, GeRM allows faster inference speed with higher whole model capacity, and thus resolves the issue of limited RL parameters, enhancing model performance in multi-task learning while controlling computational costs. Through a series of experiments, we demonstrate that GeRM outperforms other methods across all tasks, while also validating its efficiency in both training and inference processes. Additionally, we uncover its potential to acquire emergent skills. Additionally, we contribute the QUARD-Auto dataset, collected automatically to support our training approach and foster advancements in multi-task quadruped robot learning. This work presents a new paradigm for reducing the cost of collecting robot data and driving progress in the multi-task learning community.

Graph Neural Networks (GNNs) have shown promising performance in various graph learning tasks, but at the cost of resource-intensive computations. The primary overhead of GNN update stems from graph propagation and weight transformation, both involving operations on graph-scale matrices. Previous studies attempt to reduce the computational budget by leveraging graph-level or network-level sparsification techniques, resulting in downsized graph or weights. In this work, we propose Unifews, which unifies the two operations in an entry-wise manner considering individual matrix elements, and conducts joint edge-weight sparsification to enhance learning efficiency. The entry-wise design of Unifews enables adaptive compression across GNN layers with progressively increased sparsity, and is applicable to a variety of architectural designs with on-the-fly operation simplification. Theoretically, we establish a novel framework to characterize sparsified GNN learning in view of a graph optimization process, and prove that Unifews effectively approximates the learning objective with bounded error and reduced computational load. We conduct extensive experiments to evaluate the performance of our method in diverse settings. Unifews is advantageous in jointly removing more than 90% of edges and weight entries with comparable or better accuracy than baseline models. The sparsification offers remarkable efficiency improvements including 10-20x matrix operation reduction and up to 100x acceleration in graph propagation time for the largest graph at the billion-edge scale.

Reinforcement learning (RL) makes an agent learn from trial-and-error experiences gathered during the interaction with the environment. Recently, offline RL has become a popular RL paradigm because it saves the interactions with environments. In offline RL, data providers share large pre-collected datasets, and others can train high-quality agents without interacting with the environments. This paradigm has demonstrated effectiveness in critical tasks like robot control, autonomous driving, etc. However, less attention is paid to investigating the security threats to the offline RL system. This paper focuses on backdoor attacks, where some perturbations are added to the data (observations) such that given normal observations, the agent takes high-rewards actions, and low-reward actions on observations injected with triggers. In this paper, we propose Baffle (Backdoor Attack for Offline Reinforcement Learning), an approach that automatically implants backdoors to RL agents by poisoning the offline RL dataset, and evaluate how different offline RL algorithms react to this attack. Our experiments conducted on four tasks and four offline RL algorithms expose a disquieting fact: none of the existing offline RL algorithms is immune to such a backdoor attack. More specifically, Baffle modifies 10\% of the datasets for four tasks (3 robotic controls and 1 autonomous driving). Agents trained on the poisoned datasets perform well in normal settings. However, when triggers are presented, the agents' performance decreases drastically by 63.2\%, 53.9\%, 64.7\%, and 47.4\% in the four tasks on average. The backdoor still persists after fine-tuning poisoned agents on clean datasets. We further show that the inserted backdoor is also hard to be detected by a popular defensive method. This paper calls attention to developing more effective protection for the open-source offline RL dataset.

This paper introduces LeTO, a method for learning constrained visuomotor policy via differentiable trajectory optimization. Our approach uniquely integrates a differentiable optimization layer into the neural network. By formulating the optimization layer as a trajectory optimization problem, we enable the model to end-to-end generate actions in a safe and controlled fashion without extra modules. Our method allows for the introduction of constraints information during the training process, thereby balancing the training objectives of satisfying constraints, smoothing the trajectories, and minimizing errors with demonstrations. This "gray box" method marries the optimization-based safety and interpretability with the powerful representational abilities of neural networks. We quantitatively evaluate LeTO in simulation and on the real robot. In simulation, LeTO achieves a success rate comparable to state-of-the-art imitation learning methods, but the generated trajectories are of less uncertainty, higher quality, and smoother. In real-world experiments, we deployed LeTO to handle constraints-critical tasks. The results show the effectiveness of LeTO comparing with state-of-the-art imitation learning approaches. We release our code at //github.com/ZhengtongXu/LeTO.

Despite the progress of learning-based methods for 6D object pose estimation, the trade-off between accuracy and scalability for novel objects still exists. Specifically, previous methods for novel objects do not make good use of the target object's 3D shape information since they focus on generalization by processing the shape indirectly, making them less effective. We present GenFlow, an approach that enables both accuracy and generalization to novel objects with the guidance of the target object's shape. Our method predicts optical flow between the rendered image and the observed image and refines the 6D pose iteratively. It boosts the performance by a constraint of the 3D shape and the generalizable geometric knowledge learned from an end-to-end differentiable system. We further improve our model by designing a cascade network architecture to exploit the multi-scale correlations and coarse-to-fine refinement. GenFlow ranked first on the unseen object pose estimation benchmarks in both the RGB and RGB-D cases. It also achieves performance competitive with existing state-of-the-art methods for the seen object pose estimation without any fine-tuning.

To solve complex tasks under resource constraints, reinforcement learning (RL) agents need to be simple, efficient, and scalable, addressing (1) large state spaces and (2) the continuous accumulation of interaction data. We propose HyperAgent, an RL framework featuring the hypermodel and index sampling schemes that enable computation-efficient incremental approximation for the posteriors associated with general value functions without the need for conjugacy, and data-efficient action selection. Implementing HyperAgent is straightforward, requiring only one additional module beyond what is necessary for Double-DQN. HyperAgent stands out as the first method to offer robust performance in large-scale deep RL benchmarks while achieving provably scalable per-step computational complexity and attaining sublinear regret under tabular assumptions. HyperAgent can solve Deep Sea hard exploration problems with episodes that optimally scale with problem size and exhibits significant efficiency gains in both data and computation under the Atari benchmark. The core of our theoretical analysis is the sequential posterior approximation argument, enabled by the first analytical tool for sequential random projection -- a non-trivial martingale extension of the Johnson-Lindenstrauss. This work bridges the theoretical and practical realms of RL, establishing a new benchmark for RL algorithm design.

In offline reinforcement learning (RL), an RL agent learns to solve a task using only a fixed dataset of previously collected data. While offline RL has been successful in learning real-world robot control policies, it typically requires large amounts of expert-quality data to learn effective policies that generalize to out-of-distribution states. Unfortunately, such data is often difficult and expensive to acquire in real-world tasks. Several recent works have leveraged data augmentation (DA) to inexpensively generate additional data, but most DA works apply augmentations in a random fashion and ultimately produce highly suboptimal augmented experience. In this work, we propose Guided Data Augmentation (GuDA), a human-guided DA framework that generates expert-quality augmented data. The key insight behind GuDA is that while it may be difficult to demonstrate the sequence of actions required to produce expert data, a user can often easily characterize when an augmented trajectory segment represents progress toward task completion. Thus, a user can restrict the space of possible augmentations to automatically reject suboptimal augmented data. To extract a policy from GuDA, we use off-the-shelf offline reinforcement learning and behavior cloning algorithms. We evaluate GuDA on a physical robot soccer task as well as simulated D4RL navigation tasks, a simulated autonomous driving task, and a simulated soccer task. Empirically, GuDA enables learning given a small initial dataset of potentially suboptimal experience and outperforms a random DA strategy as well as a model-based DA strategy.

The task of SQL query equivalence checking is important in various real-world applications (including query rewriting and automated grading) that involve complex queries with integrity constraints; yet, state-of-the-art techniques are very limited in their capability of reasoning about complex features (e.g., those that involve sorting, case statement, rich integrity constraints, etc.) in real-life queries. To the best of our knowledge, we propose the first SMT-based approach and its implementation, VeriEQL, capable of proving and disproving bounded equivalence of complex SQL queries. VeriEQL is based on a new logical encoding that models query semantics over symbolic tuples using the theory of integers with uninterpreted functions. It is simple yet highly practical -- our comprehensive evaluation on over 20,000 benchmarks shows that VeriEQL outperforms all state-of-the-art techniques by more than one order of magnitude in terms of the number of benchmarks that can be proved or disproved. VeriEQL can also generate counterexamples that facilitate many downstream tasks (such as finding serious bugs in systems like MySQL and Apache Calcite).

Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.

北京阿比特科技有限公司