We study the question of local testability of low (constant) degree functions from a product domain $S_1 \times \dots \times {S}_n$ to a field $\mathbb{F}$, where ${S_i} \subseteq \mathbb{F}$ can be arbitrary constant sized sets. We show that this family is locally testable when the grid is "symmetric". That is, if ${S_i} = {S}$ for all i, there is a probabilistic algorithm using constantly many queries that distinguishes whether $f$ has a polynomial representation of degree at most $d$ or is $\Omega(1)$-far from having this property. In contrast, we show that there exist asymmetric grids with $|{S}_1| =\dots= |{S}_n| = 3$ for which testing requires $\omega_n(1)$ queries, thereby establishing that even in the context of polynomials, local testing depends on the structure of the domain and not just the distance of the underlying code. The low-degree testing problem has been studied extensively over the years and a wide variety of tools have been applied to propose and analyze tests. Our work introduces yet another new connection in this rich field, by building low-degree tests out of tests for "junta-degrees". A function $f : {S}_1 \times \dots \times {S}_n \to {G}$, for an abelian group ${G}$ is said to be a junta-degree-$d$ function if it is a sum of $d$-juntas. We derive our low-degree test by giving a new local test for junta-degree-$d$ functions. For the analysis of our tests, we deduce a small-set expansion theorem for spherical noise over large grids, which may be of independent interest.
We introduce a new approach to prediction in graphical models with latent-shift adaptation, i.e., where source and target environments differ in the distribution of an unobserved confounding latent variable. Previous work has shown that as long as "concept" and "proxy" variables with appropriate dependence are observed in the source environment, the latent-associated distributional changes can be identified, and target predictions adapted accurately. However, practical estimation methods do not scale well when the observations are complex and high-dimensional, even if the confounding latent is categorical. Here we build upon a recently proposed probabilistic unsupervised learning framework, the recognition-parametrised model (RPM), to recover low-dimensional, discrete latents from image observations. Applied to the problem of latent shifts, our novel form of RPM identifies causal latent structure in the source environment, and adapts properly to predict in the target. We demonstrate results in settings where predictor and proxy are high-dimensional images, a context to which previous methods fail to scale.
The equilibrium configuration of a plasma in an axially symmetric reactor is described mathematically by a free boundary problem associated with the celebrated Grad--Shafranov equation. The presence of uncertainty in the model parameters introduces the need to quantify the variability in the predictions. This is often done by computing a large number of model solutions on a computational grid for an ensemble of parameter values and then obtaining estimates for the statistical properties of solutions. In this study, we explore the savings that can be obtained using multilevel Monte Carlo methods, which reduce costs by performing the bulk of the computations on a sequence of spatial grids that are coarser than the one that would typically be used for a simple Monte Carlo simulation. We examine this approach using both a set of uniformly refined grids and a set of adaptively refined grids guided by a discrete error estimator. Numerical experiments show that multilevel methods dramatically reduce the cost of simulation, with cost reductions typically on the order of 60 or more and possibly as large as 200. Adaptive gridding results in more accurate computation of geometric quantities such as x-points associated with the model.
Within the next decade the Laser Interferometer Space Antenna (LISA) is due to be launched, providing the opportunity to extract physics from stellar objects and systems, such as \textit{Extreme Mass Ratio Inspirals}, (EMRIs) otherwise undetectable to ground based interferometers and Pulsar Timing Arrays (PTA). Unlike previous sources detected by the currently available observational methods, these sources can \textit{only} be simulated using an accurate computation of the gravitational self-force. Whereas the field has seen outstanding progress in the frequency domain, metric reconstruction and self-force calculations are still an open challenge in the time domain. Such computations would not only further corroborate frequency domain calculations and models, but also allow for full self-consistent evolution of the orbit under the effect of the self-force. Given we have \textit{a priori} information about the local structure of the discontinuity at the particle, we will show how to construct discontinuous spatial and temporal discretisations by operating on discontinuous Lagrange and Hermite interpolation formulae and hence recover higher order accuracy. In this work we demonstrate how this technique in conjunction with well-suited gauge choice (hyperboloidal slicing) and numerical (discontinuous collocation with time symmetric) methods can provide a relatively simple method of lines numerical algorithm to the problem. This is the first of a series of papers studying the behaviour of a point-particle prescribing circular geodesic motion in Schwarzschild in the \textit{time domain}. In this work we describe the numerical machinery necessary for these computations and show not only our work is capable of highly accurate flux radiation measurements but it also shows suitability for evaluation of the necessary field and it's derivatives at the particle limit.
When analyzing real-world data it is common to work with event ensembles, which comprise sets of observations that collectively constrain the parameters of an underlying model of interest. Such models often have a hierarchical structure, where "local" parameters impact individual events and "global" parameters influence the entire dataset. We introduce practical approaches for optimal dataset-wide probabilistic inference in cases where the likelihood is intractable, but simulations can be realized via forward modeling. We construct neural estimators for the likelihood(-ratio) or posterior and show that explicitly accounting for the model's hierarchical structure can lead to tighter parameter constraints. We ground our discussion using case studies from the physical sciences, focusing on examples from particle physics (particle collider data) and astrophysics (strong gravitational lensing observations).
The approximate stabilizer rank of a quantum state is the minimum number of terms in any approximate decomposition of that state into stabilizer states. Bravyi and Gosset showed that the approximate stabilizer rank of a so-called "magic" state like $|T\rangle^{\otimes n}$, up to polynomial factors, is an upper bound on the number of classical operations required to simulate an arbitrary quantum circuit with Clifford gates and $n$ number of $T$ gates. As a result, an exponential lower bound on this quantity seems inevitable. Despite this intuition, several attempts using various techniques could not lead to a better than a linear lower bound on the "exact" rank of ${|T\rangle}^{\otimes n}$, meaning the minimal size of a decomposition that exactly produces the state. For the "approximate" rank, which is more realistically related to the cost of simulating quantum circuits, no lower bound better than $\tilde \Omega(\sqrt n)$ has been known. In this paper, we improve the lower bound on the approximate rank to $\tilde \Omega (n^2)$ for a wide range of the approximation parameters. An immediate corollary of our result is the existence of polynomial time computable functions which require a super-linear number of terms in any decomposition into exponentials of quadratic forms over $\mathbb{F}_2$, resolving a question in [Wil18]. Our approach is based on a strong lower bound on the approximate rank of a quantum state sampled from the Haar measure, a step-by-step analysis of the approximate rank of a magic-state teleportation protocol to sample from the Haar measure, and a result about trading Clifford operations with $T$ gates by [LKS18].
Most implementations of Bayesian additive regression trees (BART) one-hot encode categorical predictors, replacing each one with several binary indicators, one for every level or category. Regression trees built with these indicators partition the discrete set of categorical levels by repeatedly removing one level at a time. Unfortunately, the vast majority of partitions cannot be built with this strategy, severely limiting BART's ability to partially pool data across groups of levels. Motivated by analyses of baseball data and neighborhood-level crime dynamics, we overcame this limitation by re-implementing BART with regression trees that can assign multiple levels to both branches of a decision tree node. To model spatial data aggregated into small regions, we further proposed a new decision rule prior that creates spatially contiguous regions by deleting a random edge from a random spanning tree of a suitably defined network. Our re-implementation, which is available in the flexBART package, often yields improved out-of-sample predictive performance and scales better to larger datasets than existing implementations of BART.
R is a language and environment for statistical computing and graphics, which provides a wide variety of statistical tools (modeling, statistical testing, time series analysis, classification problems, machine learning, ...), together with amazing graphical techniques and the great advantage that it is highly extensible. Nowadays, there is no doubt that it is the software par excellence in statistical courses for any level, for theoretical and applied subjects alike. Besides, it has become an almost essential tool for every research work that involves any kind of analysis or data visualization. Furthermore, it is one of the most employed programming languages for general purposes. The goal of this work is helping to share ideas and resources to improve teaching and/or research using the statistical software R. We will cover its benefits, show how to get started and where to locate specific resources, and will make interesting recommendations for using R, according to our experience. For the classroom we will develop a curricular and assessment infrastructure to support both dissemination and evaluation, while for research we will offer a broader approach to quantitative studies that provides an excellent support for work in science and technology.
The algebraic degree is an important parameter of Boolean functions used in cryptography. When a function in a large number of variables is not given explicitly in algebraic normal form, it might not be feasible to compute its degree. Instead, one can try to estimate the degree using probabilistic tests. We propose a probabilistic test for deciding whether the algebraic degree of a Boolean function $f$ is below a certain value $k$. The test involves picking an affine space of dimension $k$ and testing whether the values on $f$ on that space sum up to zero. If $deg(f)<k$, then $f$ will always pass the test, otherwise it will sometimes pass and sometimes fail the test, depending on which affine space was chosen. The probability of failing the proposed test is closely related to the number of monomials of degree $k$ in a polynomial $g$, averaged over all the polynomials $g$ which are affine equivalent to $f$. We initiate the study of the probability of failing the proposed ``$deg(f)<k$'' test. We show that in the particular case when the degree of $f$ is actually equal to $k$, the probability will be in the interval $(0.288788, 0.5]$, and therefore a small number of runs of the test is sufficient to give, with very high probability, the correct answer. Exact values of this probability for all the polynomials in 8 variables were computed using the representatives listed by Hou and by Langevin and Leander.
Connectivity is a fundamental structural property of matroids, and has been studied algorithmically over 50 years. In 1974, Cunningham proposed a deterministic algorithm consuming $O(n^{2})$ queries to the independence oracle to determine whether a matroid is connected. Since then, no algorithm, not even a random one, has worked better. To the best of our knowledge, the classical query complexity lower bound and the quantum complexity for this problem have not been considered. Thus, in this paper we are devoted to addressing these issues, and our contributions are threefold as follows: (i) First, we prove that the randomized query complexity of determining whether a matroid is connected is $\Omega(n^2)$ and thus the algorithm proposed by Cunningham is optimal in classical computing. (ii) Second, we present a quantum algorithm with $O(n^{3/2})$ queries, which exhibits provable quantum speedups over classical ones. (iii) Third, we prove that any quantum algorithm requires $\Omega(n)$ queries, which indicates that quantum algorithms can achieve at most a quadratic speedup over classical ones. Therefore, we have a relatively comprehensive understanding of the potential of quantum computing in determining the connectedness of matroids.\
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.