Worry over polarization has grown alongside the digital information consumption revolution. Where most scientific work considered user-generated and user-disseminated (i.e.,~Web 2.0) content as the culprit, the potential of purely increased access to information (or Web 1.0) has been largely overlooked. Here, we suggest that the shift to Web 1.0 alone could include a powerful mechanism of belief extremization. We study an empirically calibrated persuasive argument model with confirmation bias. We compare an offline setting -- in which a limited number of arguments is broadcast by traditional media -- with an online setting -- in which the agent can choose to watch contents within a very wide set of possibilities. In both cases, we assume that positive and negative arguments are balanced. The simulations show that the online setting leads to significantly more extreme opinions and amplifies initial prejudice.
Deep learning has fundamentally transformed artificial intelligence, but the ever-increasing complexity in deep learning models calls for specialized hardware accelerators. Optical accelerators can potentially offer enhanced performance, scalability, and energy efficiency. However, achieving nonlinear mapping, a critical component of neural networks, remains challenging optically. Here, we introduce a design that leverages multiple scattering in a reverberating cavity to passively induce optical nonlinear random mapping, without the need for additional laser power. A key advantage emerging from our work is that we show we can perform optical data compression, facilitated by multiple scattering in the cavity, to efficiently compress and retain vital information while also decreasing data dimensionality. This allows rapid optical information processing and generation of low dimensional mixtures of highly nonlinear features. These are particularly useful for applications demanding high-speed analysis and responses such as in edge computing devices. Utilizing rapid optical information processing capabilities, our optical platforms could potentially offer more efficient and real-time processing solutions for a broad range of applications. We demonstrate the efficacy of our design in improving computational performance across tasks, including classification, image reconstruction, key-point detection, and object detection, all achieved through optical data compression combined with a digital decoder. Notably, we observed high performance, at an extreme compression ratio, for real-time pedestrian detection. Our findings pave the way for novel algorithms and architectural designs for optical computing.
Developers often face challenges in code understanding, which is crucial for building and maintaining high-quality software systems. Code comments and documentation can provide some context for the code, but are often scarce or missing. This challenge has become even more pressing with the rise of large language model (LLM) based code generation tools. To understand unfamiliar code, most software developers rely on general-purpose search engines to search through various programming information resources, which often requires multiple iterations of query rewriting and information foraging. More recently, developers have turned to online chatbots powered by LLMs, such as ChatGPT, which can provide more customized responses but also incur more overhead as developers need to communicate a significant amount of context to the LLM via a textual interface. In this study, we provide the investigation of an LLM-based conversational UI in the IDE. We aim to understand the promises and obstacles for tools powered by LLMs that are contextually aware, in that they automatically leverage the developer's programming context to answer queries. To this end, we develop an IDE Plugin that allows users to query back-ends such as OpenAI's GPT-3.5 and GPT-4 with high-level requests, like: explaining a highlighted section of code, explaining key domain-specific terms, or providing usage examples for an API. We conduct an exploratory user study with 32 participants to understand the usefulness and effectiveness, as well as individual preferences in the usage of, this LLM-powered information support tool. The study confirms that this approach can aid code understanding more effectively than web search, but the degree of the benefit differed by participants' experience levels.
This paper investigates the relationship between mapping style and device roadmap in Resistive Random Access Memory (ReRAM) architectures for neuromorphic computing. The study leverages simulations using DNN+NeuroSim to evaluate the impact of different parameters on chip performance, including latency, energy consumption, and overall system efficiency. The results demonstrate that novel mapping techniques and a high-performance (HP) device roadmap are optimal if energy and speed considerations are weighted equally. This is because as the study demonstrates, HP devices provide a latency cut that outsizes the energy cost. Additionally, adopting novel mapping in the device cuts latency by nearly 30% while being slightly more energy efficient. The findings highlight the importance of considering mapping style and device roadmap in optimizing ReRAM architectures for neuromorphic computing, which may contribute to advancing the practical implementation of ReRAM in computational systems.
Intrinsically motivated exploration has proven useful for reinforcement learning, even without additional extrinsic rewards. When the environment is naturally represented as a graph, how to guide exploration best remains an open question. In this work, we propose a novel approach for exploring graph-structured data motivated by two theories of human curiosity: the information gap theory and the compression progress theory. The theories view curiosity as an intrinsic motivation to optimize for topological features of subgraphs induced by the visited nodes in the environment. We use these proposed features as rewards for graph neural-network-based reinforcement learning. On multiple classes of synthetically generated graphs, we find that trained agents generalize to larger environments and to longer exploratory walks than are seen during training. Our method computes more efficiently than the greedy evaluation of the relevant topological properties. The proposed intrinsic motivations bear particular relevance for recommender systems. We demonstrate that curiosity-based recommendations are more predictive of human behavior than PageRank centrality for several real-world graph datasets, including MovieLens, Amazon Books, and Wikispeedia.
In today's highly connected society, we are constantly asked to provide personal information to retailers, voter surveys, medical professionals, and other data collection efforts. The collected data is stored in large data warehouses. Organisations and statistical agencies share and use this data to facilitate research in public health, economics, sociology, etc. However, this data contains sensitive information about individuals, which can result in identity theft, financial loss, stress and depression, embarrassment, abuse, etc. Therefore, one must ensure rigorous management of individuals' privacy. We propose, an advanced data privacy management architecture composed of three layers. The data management layer consists of de-identification and anonymisation, the access management layer for re-enforcing data access based on the concepts of Role-Based Access Control and the Chinese Wall Security Policy, and the roles layer for regulating different users. The proposed system architecture is validated on healthcare datasets.
There is abundant observational data in the software engineering domain, whereas running large-scale controlled experiments is often practically impossible. Thus, most empirical studies can only report statistical correlations -- instead of potentially more insightful and robust causal relations. To support analyzing purely observational data for causal relations, and to assess any differences between purely predictive and causal models of the same data, this paper discusses some novel techniques based on structural causal models (such as directed acyclic graphs of causal Bayesian networks). Using these techniques, one can rigorously express, and partially validate, causal hypotheses; and then use the causal information to guide the construction of a statistical model that captures genuine causal relations -- such that correlation does imply causation. We apply these ideas to analyzing public data about programmer performance in Code Jam, a large world-wide coding contest organized by Google every year. Specifically, we look at the impact of different programming languages on a participant's performance in the contest. While the overall effect associated with programming languages is weak compared to other variables -- regardless of whether we consider correlational or causal links -- we found considerable differences between a purely associational and a causal analysis of the very same data. The takeaway message is that even an imperfect causal analysis of observational data can help answer the salient research questions more precisely and more robustly than with just purely predictive techniques -- where genuine causal effects may be confounded.
Online polarization research currently focuses on studying single-issue opinion distributions or computing distance metrics of interaction network structures. Limited data availability often restricts studies to positive interaction data, which can misrepresent the reality of a discussion. We introduce a novel framework that aims at combining these three aspects, content and interactions, as well as their nature (positive or negative), while challenging the prevailing notion of polarization as an umbrella term for all forms of online conflict or opposing opinions. In our approach, built on the concepts of cleavage structures and structural balance of signed social networks, we factorize polarization into two distinct metrics: Antagonism and Alignment. Antagonism quantifies hostility in online discussions, based on the reactions of users to content. Alignment uses signed structural information encoded in long-term user-user relations on the platform to describe how well user interactions fit the global and/or traditional sides of discussion. We can analyse the change of these metrics through time, localizing both relevant trends but also sudden changes that can be mapped to specific contexts or events. We apply our methods to two distinct platforms: Birdwatch, a US crowd-based fact-checking extension of Twitter, and DerStandard, an Austrian online newspaper with discussion forums. In these two use cases, we find that our framework is capable of describing the global status of the groups of users (identification of cleavages) while also providing relevant findings on specific issues or in specific time frames. Furthermore, we show that our four metrics describe distinct phenomena, emphasizing their independent consideration for unpacking polarization complexities.
Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.
The Internet of Things (IoT) boom has revolutionized almost every corner of people's daily lives: healthcare, home, transportation, manufacturing, supply chain, and so on. With the recent development of sensor and communication technologies, IoT devices including smart wearables, cameras, smartwatches, and autonomous vehicles can accurately measure and perceive their surrounding environment. Continuous sensing generates massive amounts of data and presents challenges for machine learning. Deep learning models (e.g., convolution neural networks and recurrent neural networks) have been extensively employed in solving IoT tasks by learning patterns from multi-modal sensory data. Graph Neural Networks (GNNs), an emerging and fast-growing family of neural network models, can capture complex interactions within sensor topology and have been demonstrated to achieve state-of-the-art results in numerous IoT learning tasks. In this survey, we present a comprehensive review of recent advances in the application of GNNs to the IoT field, including a deep dive analysis of GNN design in various IoT sensing environments, an overarching list of public data and source code from the collected publications, and future research directions. To keep track of newly published works, we collect representative papers and their open-source implementations and create a Github repository at //github.com/GuiminDong/GNN4IoT.
The world population is anticipated to increase by close to 2 billion by 2050 causing a rapid escalation of food demand. A recent projection shows that the world is lagging behind accomplishing the "Zero Hunger" goal, in spite of some advancements. Socio-economic and well being fallout will affect the food security. Vulnerable groups of people will suffer malnutrition. To cater to the needs of the increasing population, the agricultural industry needs to be modernized, become smart, and automated. Traditional agriculture can be remade to efficient, sustainable, eco-friendly smart agriculture by adopting existing technologies. In this survey paper the authors present the applications, technological trends, available datasets, networking options, and challenges in smart agriculture. How Agro Cyber Physical Systems are built upon the Internet-of-Agro-Things is discussed through various application fields. Agriculture 4.0 is also discussed as a whole. We focus on the technologies, such as Artificial Intelligence (AI) and Machine Learning (ML) which support the automation, along with the Distributed Ledger Technology (DLT) which provides data integrity and security. After an in-depth study of different architectures, we also present a smart agriculture framework which relies on the location of data processing. We have divided open research problems of smart agriculture as future research work in two groups - from a technological perspective and from a networking perspective. AI, ML, the blockchain as a DLT, and Physical Unclonable Functions (PUF) based hardware security fall under the technology group, whereas any network related attacks, fake data injection and similar threats fall under the network research problem group.