亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Aggregating pharmaceutical data in the drug-target interaction (DTI) domain has the potential to deliver life-saving breakthroughs. It is, however, notoriously difficult due to regulatory constraints and commercial interests. This work proposes the application of federated learning, which we argue to be reconcilable with the industry's constraints, as it does not require sharing of any information that would reveal the entities' data or any other high-level summary of it. When used on a representative GraphDTA model and the KIBA dataset it achieves up to 15% improved performance relative to the best available non-privacy preserving alternative. Our extensive battery of experiments shows that, unlike in other domains, the non-IID data distribution in the DTI datasets does not deteriorate FL performance. Additionally, we identify a material trade-off between the benefits of adding new data, and the cost of adding more clients.

相關內容

Federated Learning (FL) is a distributed machine learning paradigm that enables learning models from decentralized private datasets, where the labeling effort is entrusted to the clients. While most existing FL approaches assume high-quality labels are readily available on users' devices; in reality, label noise can naturally occur in FL and is closely related to clients' characteristics. Due to scarcity of available data and significant label noise variations among clients in FL, existing state-of-the-art centralized approaches exhibit unsatisfactory performance, while prior FL studies rely on excessive on-device computational schemes or additional clean data available on server. Here, we propose FedLN, a framework to deal with label noise across different FL training stages; namely, FL initialization, on-device model training, and server model aggregation, able to accommodate the diverse computational capabilities of devices in a FL system. Specifically, FedLN computes per-client noise-level estimation in a single federated round and improves the models' performance by either correcting or mitigating the effect of noisy samples. Our evaluation on various publicly available vision and audio datasets demonstrate a 22% improvement on average compared to other existing methods for a label noise level of 60%. We further validate the efficiency of FedLN in human-annotated real-world noisy datasets and report a 4.8% increase on average in models' recognition performance, highlighting that~\method~can be useful for improving FL services provided to everyday users.

Few-shot fine-tuning and in-context learning are two alternative strategies for task adaptation of pre-trained language models. Recently, in-context learning has gained popularity over fine-tuning due to its simplicity and improved out-of-domain generalization, and because extensive evidence shows that fine-tuned models pick up on spurious correlations. Unfortunately, previous comparisons of the two approaches were done using models of different sizes. This raises the question of whether the observed weaker out-of-domain generalization of fine-tuned models is an inherent property of fine-tuning or a limitation of the experimental setup. In this paper, we compare the generalization of few-shot fine-tuning and in-context learning to challenge datasets, while controlling for the models used, the number of examples, and the number of parameters, ranging from 125M to 30B. Our results show that fine-tuned language models can in fact generalize well out-of-domain. We find that both approaches generalize similarly; they exhibit large variation and depend on properties such as model size and the number of examples, highlighting that robust task adaptation remains a challenge.

Federated learning provides a promising privacy-preserving way for utilizing large-scale private edge data from massive Internet-of-Things (IoT) devices. While existing research extensively studied optimizing the learning process, computing efficiency, and communication overhead, one important and often overlooked aspect is that participants contribute predictive knowledge from their data, impacting the quality of the federated models learned. While FedAvg treats each client equally and assigns weight solely based on the number of samples, the diversity of samples on each client could greatly affect the local update performance and the final aggregated model. In this paper, we propose a novel approach to address this issue by introducing a Weighted Averaging (WeiAvg) framework that emphasizes updates from high-diversity clients and diminishes the influence of those from low-diversity clients. Specifically, we introduced a projection-based approximation method to estimate the diversity of client data, instead of the computation of an entropy. We use the approximation because the locally computed entropy may not be transmitted due to excess privacy risk. Extensive experimental results show that WeiAvg converges faster and achieves higher accuracy than the original FedAvg algorithm and FedProx.

We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters, which facilitates the trade-off between privacy and utility. The algorithm is applicable to arbitrary privacy measurements that maps from the distortion to a real value. It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning. Such adaptive and fine-grained protection can improve the effectiveness of privacy-preserved federated learning. Theoretically, we show that gap between the utility loss of the protection hyperparameter output by our algorithm and that of the optimal protection hyperparameter is sub-linear in the total number of iterations. The sublinearity of our algorithm indicates that the average gap between the performance of our algorithm and that of the optimal performance goes to zero when the number of iterations goes to infinity. Further, we provide the convergence rate of our proposed algorithm. We conduct empirical results on benchmark datasets to verify that our method achieves better utility than the baseline methods under the same privacy budget.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for long-tail or domain-specific tasks due to limited exposure to domain-specific knowledge and vocabulary. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with custom data. Moreover, data privacy is a significant concern. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge at runtime without altering the LLMs' parameters. Our PKG is based on open-source "white-box" small language models, allowing offline storage of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of long-tail and domain-specific downstream tasks requiring factual, tabular, medical, and multimodal knowledge.

Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecule property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

北京阿比特科技有限公司