The use of NLP in the realm of financial technology is broad and complex, with applications ranging from sentiment analysis and named entity recognition to question answering. Large Language Models (LLMs) have been shown to be effective on a variety of tasks; however, no LLM specialized for the financial domain has been reported in literature. In this work, we present BloombergGPT, a 50 billion parameter language model that is trained on a wide range of financial data. We construct a 363 billion token dataset based on Bloomberg's extensive data sources, perhaps the largest domain-specific dataset yet, augmented with 345 billion tokens from general purpose datasets. We validate BloombergGPT on standard LLM benchmarks, open financial benchmarks, and a suite of internal benchmarks that most accurately reflect our intended usage. Our mixed dataset training leads to a model that outperforms existing models on financial tasks by significant margins without sacrificing performance on general LLM benchmarks. Additionally, we explain our modeling choices, training process, and evaluation methodology. We release Training Chronicles (Appendix C) detailing our experience in training BloombergGPT.
Data sonification-mapping data variables to auditory variables, such as pitch or volume-is used for data accessibility, scientific exploration, and data-driven art (e.g., museum exhibitions) among others. While a substantial amount of research has been made on effective and intuitive sonification design, software support is not commensurate, limiting researchers from fully exploring its capabilities. We contribute Erie, a declarative grammar for data sonification, that enables abstractly expressing auditory mappings. Erie supports specifying extensible tone designs (e.g., periodic wave, sampling, frequency/amplitude modulation synthesizers), various encoding channels, auditory legends, and composition options like sequencing and overlaying. Using standard Web Audio and Web Speech APIs, we provide an Erie compiler for web environments. We demonstrate the expressiveness and feasibility of Erie by replicating research prototypes presented by prior work and provide a sonification design gallery. We discuss future steps to extend Erie toward other audio computing environments and support interactive data sonification.
In psycholinguistics, the creation of controlled materials is crucial to ensure that research outcomes are solely attributed to the intended manipulations and not influenced by extraneous factors. To achieve this, psycholinguists typically pretest linguistic materials, where a common pretest is to solicit plausibility judgments from human evaluators on specific sentences. In this work, we investigate whether Language Models (LMs) can be used to generate these plausibility judgements. We investigate a wide range of LMs across multiple linguistic structures and evaluate whether their plausibility judgements correlate with human judgements. We find that GPT-4 plausibility judgements highly correlate with human judgements across the structures we examine, whereas other LMs correlate well with humans on commonly used syntactic structures. We then test whether this correlation implies that LMs can be used instead of humans for pretesting. We find that when coarse-grained plausibility judgements are needed, this works well, but when fine-grained judgements are necessary, even GPT-4 does not provide satisfactory discriminative power.
Modern compilers, such as LLVM, are complex pieces of software. Due to their complexity, manual testing is unlikely to suffice, yet formal verification is difficult to scale. End-to-end fuzzing can be used, but it has difficulties in achieving high coverage of some components of LLVM. In this paper, we implement IRFuzzer to investigate the effectiveness of specialized fuzzing of the LLVM compiler backend. We focus on two approaches to improve the fuzzer: guaranteed input validity using constrained mutations and improved feedback quality. The mutator in IRFuzzer is capable of generating a wide range of LLVM IR inputs, including structured control flow, vector types, and function definitions. The system instruments coding patterns in the compiler to monitor the execution status of instruction selection. The instrumentation not only provides a new coverage feedback called matcher table coverage, but also provides an architecture specific guidance to the mutator. We show that IRFuzzer is more effective than existing fuzzers by fuzzing on 29 mature LLVM backend targets. In the process, we reported 74 confirmed new bugs in LLVM upstream, out of which 49 have been fixed, five have been back ported to LLVM 15, showing that specialized fuzzing provides useful and actionable insights to LLVM developers.
Feature attribution methods (FAs), such as gradients and attention, are widely employed approaches to derive the importance of all input features to the model predictions. Existing work in natural language processing has mostly focused on developing and testing FAs for encoder-only language models (LMs) in classification tasks. However, it is unknown if it is faithful to use these FAs for decoder-only models on text generation, due to the inherent differences between model architectures and task settings respectively. Moreover, previous work has demonstrated that there is no `one-wins-all' FA across models and tasks. This makes the selection of a FA computationally expensive for large LMs since input importance derivation often requires multiple forward and backward passes including gradient computations that might be prohibitive even with access to large compute. To address these issues, we present a model-agnostic FA for generative LMs called Recursive Attribution Generator (ReAGent). Our method updates the token importance distribution in a recursive manner. For each update, we compute the difference in the probability distribution over the vocabulary for predicting the next token between using the original input and using a modified version where a part of the input is replaced with RoBERTa predictions. Our intuition is that replacing an important token in the context should have resulted in a larger change in the model's confidence in predicting the token than replacing an unimportant token. Our method can be universally applied to any generative LM without accessing internal model weights or additional training and fine-tuning, as most other FAs require. We extensively compare the faithfulness of ReAGent with seven popular FAs across six decoder-only LMs of various sizes. The results show that our method consistently provides more faithful token importance distributions.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.
Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.