亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Supervised machine learning (ML) and deep learning (DL) algorithms excel at predictive tasks, but it is commonly assumed that they often do so by exploiting non-causal correlations, which may limit both interpretability and generalizability. Here, we show that this trade-off between explanation and prediction is not as deep and fundamental as expected. Whereas ML and DL algorithms will indeed tend to use non-causal features for prediction when fed indiscriminately with all data, it is possible to constrain the learning process of any ML and DL algorithm by selecting features according to Pearl's backdoor adjustment criterion. In such a situation, some algorithms, in particular deep neural networks, can provide near unbiased effect estimates under feature collinearity. Remaining biases are explained by the specific algorithmic structures as well as hyperparameter choice. Consequently, optimal hyperparameter settings are different when tuned for prediction or inference, confirming the general expectation of a trade-off between prediction and explanation. However, the effect of this trade-off is small compared to the effect of a causally constrained feature selection. Thus, once the causal relationship between the features is accounted for, the difference between prediction and explanation may be much smaller than commonly assumed. We also show that such causally constrained models generalize better to new data with altered collinearity structures, suggesting generalization failure may often be due to a lack of causal learning. Our results not only provide a perspective for using ML for inference of (causal) effects but also help to improve the generalizability of fitted ML and DL models to new data.

相關內容

In classical logic, "P implies Q" is equivalent to "not-P or Q". It is well known that the equivalence is problematic. Actually, from "P implies Q", "not-P or Q" can be inferred ("Implication-to-disjunction" is valid), while from "not-P or Q", "P implies Q" cannot be inferred in general ("Disjunction-to-implication" is not valid), so the equivalence between them is invalid. This work aims to remove exactly the incorrect Disjunction-to-implication from classical logic (CL). The paper proposes a logical system (IRL), which has the properties (1) adding Disjunction-to-implication to IRL is simply CL, and (2) Disjunction-to-implication is independent of IRL, i.e. either Disjunction-to-implication or its negation cannot be derived in IRL. In other words, IRL is just the sub-system of CL with Disjunction-to-implication being exactly removed.

Activity progress prediction aims to estimate what percentage of an activity has been completed. Currently this is done with machine learning approaches, trained and evaluated on complicated and realistic video datasets. The videos in these datasets vary drastically in length and appearance. And some of the activities have unanticipated developments, making activity progression difficult to estimate. In this work, we examine the results obtained by existing progress prediction methods on these datasets. We find that current progress prediction methods seem not to extract useful visual information for the progress prediction task. Therefore, these methods fail to exceed simple frame-counting baselines. We design a precisely controlled dataset for activity progress prediction and on this synthetic dataset we show that the considered methods can make use of the visual information, when this directly relates to the progress prediction. We conclude that the progress prediction task is ill-posed on the currently used real-world datasets. Moreover, to fairly measure activity progression we advise to consider a, simple but effective, frame-counting baseline.

Here, we show that the InfoNCE objective is equivalent to the ELBO in a new class of probabilistic generative model, the recognition parameterised model (RPM). When we learn the optimal prior, the RPM ELBO becomes equal to the mutual information (MI; up to a constant), establishing a connection to pre-existing self-supervised learning methods such as InfoNCE. However, practical InfoNCE methods do not use the MI as an objective; the MI is invariant to arbitrary invertible transformations, so using an MI objective can lead to highly entangled representations (Tschannen et al., 2019). Instead, the actual InfoNCE objective is a simplified lower bound on the MI which is loose even in the infinite sample limit. Thus, an objective that works (i.e. the actual InfoNCE objective) appears to be motivated as a loose bound on an objective that does not work (i.e. the true MI which gives arbitrarily entangled representations). We give an alternative motivation for the actual InfoNCE objective. In particular, we show that in the infinite sample limit, and for a particular choice of prior, the actual InfoNCE objective is equal to the ELBO (up to a constant); and the ELBO is equal to the marginal likelihood with a deterministic recognition model. Thus, we argue that our VAE perspective gives a better motivation for InfoNCE than MI, as the actual InfoNCE objective is only loosely bounded by the MI, but is equal to the ELBO/marginal likelihood (up to a constant).

The decentralized and privacy-preserving nature of federated learning (FL) makes it vulnerable to backdoor attacks aiming to manipulate the behavior of the resulting model on specific adversary-chosen inputs. However, most existing defenses based on statistical differences take effect only against specific attacks, especially when the malicious gradients are similar to benign ones or the data are highly non-independent and identically distributed (non-IID). In this paper, we revisit the distance-based defense methods and discover that i) Euclidean distance becomes meaningless in high dimensions and ii) malicious gradients with diverse characteristics cannot be identified by a single metric. To this end, we present a simple yet effective defense strategy with multi-metrics and dynamic weighting to identify backdoors adaptively. Furthermore, our novel defense has no reliance on predefined assumptions over attack settings or data distributions and little impact on benign performance. To evaluate the effectiveness of our approach, we conduct comprehensive experiments on different datasets under various attack settings, where our method achieves the best defensive performance. For instance, we achieve the lowest backdoor accuracy of 3.06% under the difficult Edge-case PGD, showing significant superiority over previous defenses. The results also demonstrate that our method can be well-adapted to a wide range of non-IID degrees without sacrificing the benign performance.

In human-AI collaboration systems for critical applications, in order to ensure minimal error, users should set an operating point based on model confidence to determine when the decision should be delegated to human experts. Samples for which model confidence is lower than the operating point would be manually analysed by experts to avoid mistakes. Such systems can become truly useful only if they consider two aspects: models should be confident only for samples for which they are accurate, and the number of samples delegated to experts should be minimized. The latter aspect is especially crucial for applications where available expert time is limited and expensive, such as healthcare. The trade-off between the model accuracy and the number of samples delegated to experts can be represented by a curve that is similar to an ROC curve, which we refer to as confidence operating characteristic (COC) curve. In this paper, we argue that deep neural networks should be trained by taking into account both accuracy and expert load and, to that end, propose a new complementary loss function for classification that maximizes the area under this COC curve. This promotes simultaneously the increase in network accuracy and the reduction in number of samples delegated to humans. We perform experiments on multiple computer vision and medical image datasets for classification. Our results demonstrate that the proposed loss improves classification accuracy and delegates less number of decisions to experts, achieves better out-of-distribution samples detection and on par calibration performance compared to existing loss functions.

Despite its importance for insurance, there is almost no literature on statistical hail damage modeling. Statistical models for hailstorms exist, though they are generally not open-source, but no study appears to have developed a stochastic hail impact function. In this paper, we use hail-related insurance claim data to build a Gaussian line process with extreme marks to model both the geographical footprint of a hailstorm and the damage to buildings that hailstones can cause. We build a model for the claim counts and claim values, and compare it to the use of a benchmark deterministic hail impact function. Our model proves to be better than the benchmark at capturing hail spatial patterns and allows for localized and extreme damage, which is seen in the insurance data. The evaluation of both the claim counts and value predictions shows that performance is improved compared to the benchmark, especially for extreme damage. Our model appears to be the first to provide realistic estimates for hail damage to individual buildings.

Compared to widely used likelihood-based approaches, the minimum contrast (MC) method is a computationally efficient method for estimation and inference of parametric stationary point processes. This advantage becomes more pronounced when analyzing complex point process models, such as multivariate log-Gaussian Cox processes (LGCP). Despite its practical advantages, there is very little work on the MC method for multivariate point processes. The aim of this article is to introduce a new MC method for parametric multivariate stationary spatial point processes. A contrast function is calculated based on the trace of the power of the difference between the conjectured $K$-function matrix and its nonparametric unbiased edge-corrected estimator. Under standard assumptions, the asymptotic normality of the MC estimator of the model parameters is derived. The performance of the proposed method is illustrated with bivariate LGCP simulations and a real data analysis of a bivariate point pattern of the 2014 terrorist attacks in Nigeria.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司