Early detection of fish diseases and identifying the underlying causes are crucial for farmers to take necessary steps to mitigate the potential outbreak and thus to avert financial losses with apparent negative implications to the national economy. Typically, fish diseases are caused by viruses and bacteria; according to biochemical studies, the presence of certain bacteria and viruses may affect the level of pH, DO, BOD, COD, TSS, TDS, EC, PO43-, NO3-N, and NH3-N in water, resulting in the death of fishes. Besides, natural processes, e.g., photosynthesis, respiration, and decomposition, also contribute to the alteration of water quality that adversely affects fish health. Being motivated by the recent successes of machine learning techniques, a state-of-art machine learning algorithm has been adopted in this paper to detect and predict the degradation of water quality timely and accurately. Thus, it helps to take preemptive steps against potential fish diseases. The experimental results show high accuracy in detecting fish diseases specific to water quality based on the algorithm with real datasets.
Unsupervised anomalous sound detection aims to detect unknown abnormal sounds of machines from normal sounds. However, the state-of-the-art approaches are not always stable and perform dramatically differently even for machines of the same type, making it impractical for general applications. This paper proposes a spectral-temporal fusion based self-supervised method to model the feature of the normal sound, which improves the stability and performance consistency in detection of anomalous sounds from individual machines, even of the same type. Experiments on the DCASE 2020 Challenge Task 2 dataset show that the proposed method achieved 81.39%, 83.48%, 98.22% and 98.83% in terms of the minimum AUC (worst-case detection performance amongst individuals) in four types of real machines (fan, pump, slider and valve), respectively, giving 31.79%, 17.78%, 10.42% and 21.13% improvement compared to the state-of-the-art method, i.e., Glow_Aff. Moreover, the proposed method has improved AUC (average performance of individuals) for all the types of machines in the dataset.
The increasing automation in many areas of the Industry expressly demands to design efficient machine-learning solutions for the detection of abnormal events. With the ubiquitous deployment of sensors monitoring nearly continuously the health of complex infrastructures, anomaly detection can now rely on measurements sampled at a very high frequency, providing a very rich representation of the phenomenon under surveillance. In order to exploit fully the information thus collected, the observations cannot be treated as multivariate data anymore and a functional analysis approach is required. It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets. After an overview of the state-of-the-art and a visual-descriptive study, a variety of anomaly detection methods are compared. While taxonomies of abnormalities (e.g. shape, location) in the functional setup are documented in the literature, assigning a specific type to the identified anomalies appears to be a challenging task. Thus, strengths and weaknesses of the existing approaches are benchmarked in view of these highlighted types in a simulation study. Anomaly detection methods are next evaluated on two datasets, related to the monitoring of helicopters in flight and to the spectrometry of construction materials namely. The benchmark analysis is concluded by recommendation guidance for practitioners.
Disfluency detection is a critical task in real-time dialogue systems. However, despite its importance, it remains a relatively unexplored field, mainly due to the lack of appropriate datasets. At the same time, existing datasets suffer from various issues, including class imbalance issues, which can significantly affect the performance of the model on rare classes, as it is demonstrated in this paper. To this end, we propose LARD, a method for generating complex and realistic artificial disfluencies with little effort. The proposed method can handle three of the most common types of disfluencies: repetitions, replacements and restarts. In addition, we release a new large-scale dataset with disfluencies that can be used on four different tasks: disfluency detection, classification, extraction and correction. Experimental results on the LARD dataset demonstrate that the data produced by the proposed method can be effectively used for detecting and removing disfluencies, while also addressing limitations of existing datasets.
Due to the wavelength-dependent light attenuation, refraction and scattering, underwater images usually suffer from color distortion and blurred details. However, due to the limited number of paired underwater images with undistorted images as reference, training deep enhancement models for diverse degradation types is quite difficult. To boost the performance of data-driven approaches, it is essential to establish more effective learning mechanisms that mine richer supervised information from limited training sample resources. In this paper, we propose a novel underwater image enhancement network, called SGUIE-Net, in which we introduce semantic information as high-level guidance across different images that share common semantic regions. Accordingly, we propose semantic region-wise enhancement module to perceive the degradation of different semantic regions from multiple scales and feed it back to the global attention features extracted from its original scale. This strategy helps to achieve robust and visually pleasant enhancements to different semantic objects, which should thanks to the guidance of semantic information for differentiated enhancement. More importantly, for those degradation types that are not common in the training sample distribution, the guidance connects them with the already well-learned types according to their semantic relevance. Extensive experiments on the publicly available datasets and our proposed dataset demonstrated the impressive performance of SGUIE-Net. The code and proposed dataset are available at: //trentqq.github.io/SGUIE-Net.html
Understanding the inner workings of deep neural networks (DNNs) is essential to provide trustworthy artificial intelligence techniques for practical applications. Existing studies typically involve linking semantic concepts to units or layers of DNNs, but fail to explain the inference process. In this paper, we introduce neural architecture disentanglement (NAD) to fill the gap. Specifically, NAD learns to disentangle a pre-trained DNN into sub-architectures according to independent tasks, forming information flows that describe the inference processes. We investigate whether, where, and how the disentanglement occurs through experiments conducted with handcrafted and automatically-searched network architectures, on both object-based and scene-based datasets. Based on the experimental results, we present three new findings that provide fresh insights into the inner logic of DNNs. First, DNNs can be divided into sub-architectures for independent tasks. Second, deeper layers do not always correspond to higher semantics. Third, the connection type in a DNN affects how the information flows across layers, leading to different disentanglement behaviors. With NAD, we further explain why DNNs sometimes give wrong predictions. Experimental results show that misclassified images have a high probability of being assigned to task sub-architectures similar to the correct ones. Code will be available at: //github.com/hujiecpp/NAD.
Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.
Most existing approaches to disfluency detection heavily rely on human-annotated data, which is expensive to obtain in practice. To tackle the training data bottleneck, we investigate methods for combining multiple self-supervised tasks-i.e., supervised tasks where data can be collected without manual labeling. First, we construct large-scale pseudo training data by randomly adding or deleting words from unlabeled news data, and propose two self-supervised pre-training tasks: (i) tagging task to detect the added noisy words. (ii) sentence classification to distinguish original sentences from grammatically-incorrect sentences. We then combine these two tasks to jointly train a network. The pre-trained network is then fine-tuned using human-annotated disfluency detection training data. Experimental results on the commonly used English Switchboard test set show that our approach can achieve competitive performance compared to the previous systems (trained using the full dataset) by using less than 1% (1000 sentences) of the training data. Our method trained on the full dataset significantly outperforms previous methods, reducing the error by 21% on English Switchboard.
Outlier detection is an important topic in machine learning and has been used in a wide range of applications. In this paper, we approach outlier detection as a binary-classification issue by sampling potential outliers from a uniform reference distribution. However, due to the sparsity of data in high-dimensional space, a limited number of potential outliers may fail to provide sufficient information to assist the classifier in describing a boundary that can separate outliers from normal data effectively. To address this, we propose a novel Single-Objective Generative Adversarial Active Learning (SO-GAAL) method for outlier detection, which can directly generate informative potential outliers based on the mini-max game between a generator and a discriminator. Moreover, to prevent the generator from falling into the mode collapsing problem, the stop node of training should be determined when SO-GAAL is able to provide sufficient information. But without any prior information, it is extremely difficult for SO-GAAL. Therefore, we expand the network structure of SO-GAAL from a single generator to multiple generators with different objectives (MO-GAAL), which can generate a reasonable reference distribution for the whole dataset. We empirically compare the proposed approach with several state-of-the-art outlier detection methods on both synthetic and real-world datasets. The results show that MO-GAAL outperforms its competitors in the majority of cases, especially for datasets with various cluster types or high irrelevant variable ratio.
The ever-growing interest witnessed in the acquisition and development of unmanned aerial vehicles (UAVs), commonly known as drones in the past few years, has brought generation of a very promising and effective technology. Because of their characteristic of small size and fast deployment, UAVs have shown their effectiveness in collecting data over unreachable areas and restricted coverage zones. Moreover, their flexible-defined capacity enables them to collect information with a very high level of detail, leading to high resolution images. UAVs mainly served in military scenario. However, in the last decade, they have being broadly adopted in civilian applications as well. The task of aerial surveillance and situation awareness is usually completed by integrating intelligence, surveillance, observation, and navigation systems, all interacting in the same operational framework. To build this capability, UAV's are well suited tools that can be equipped with a wide variety of sensors, such as cameras or radars. Deep learning has been widely recognized as a prominent approach in different computer vision applications. Specifically, one-stage object detector and two-stage object detector are regarded as the most important two groups of Convolutional Neural Network based object detection methods. One-stage object detector could usually outperform two-stage object detector in speed; however, it normally trails in detection accuracy, compared with two-stage object detectors. In this study, focal loss based RetinaNet, which works as one-stage object detector, is utilized to be able to well match the speed of regular one-stage detectors and also defeat two-stage detectors in accuracy, for UAV based object detection. State-of-the-art performance result has been showed on the UAV captured image dataset-Stanford Drone Dataset (SDD).
This paper investigates to identify the requirement and the development of machine learning-based mobile big data analysis through discussing the insights of challenges in the mobile big data (MBD). Furthermore, it reviews the state-of-the-art applications of data analysis in the area of MBD. Firstly, we introduce the development of MBD. Secondly, the frequently adopted methods of data analysis are reviewed. Three typical applications of MBD analysis, namely wireless channel modeling, human online and offline behavior analysis, and speech recognition in the internet of vehicles, are introduced respectively. Finally, we summarize the main challenges and future development directions of mobile big data analysis.