亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Describing systems in terms of choices and their resulting costs and rewards offers the promise of freeing algorithm designers and programmers from specifying how those choices should be made; in implementations, the choices can be realized by optimization techniques and, increasingly, by machine-learning methods. We study this approach from a programming-language perspective. We define two small languages that support decision-making abstractions: one with choices and rewards, and the other additionally with probabilities. We give both operational and denotational semantics. In the case of the second language we consider three denotational semantics, with varying degrees of correlation between possible program values and expected rewards. The operational semantics combine the usual semantics of standard constructs with optimization over spaces of possible execution strategies. The denotational semantics, which are compositional, rely on the selection monad, to handle choice, augmented with an auxiliary monad to handle other effects, such as rewards or probability. We establish adequacy theorems that the two semantics coincide in all cases. We also prove full abstraction at base types, with varying notions of observation in the probabilistic case corresponding to the various degrees of correlation. We present axioms for choice combined with rewards and probability, establishing completeness at base types for the case of rewards without probability.

相關內容

Negation is both an operation in formal logic and in natural language by which a proposition is replaced by one stating the opposite, as by the addition of "not" or another negation cue. Treating negation in an adequate way is required for cognitive reasoning, which aims at modeling the human ability to draw meaningful conclusions despite incomplete and inconsistent knowledge. One task of cognitive reasoning is answering questions given by sentences in natural language. There are tools based on discourse representation theory to convert sentences automatically into a formal logic representation, and additional knowledge can be added using the predicate names in the formula and knowledge databases. However, the knowledge in logic databases in practice always is incomplete. Hence, forward reasoning of automated reasoning systems alone does not suffice to derive answers to questions because, instead of complete proofs, often only partial positive knowledge can be derived, while negative knowledge is used only during the reasoning process. In consequence, we aim at eliminating syntactic negation, strictly speaking, the negated event or property. In this paper, we describe an effective procedure to determine the negated event or property in order to replace it by its inverse. This lays the basis of cognitive reasoning, employing both logic and machine learning for general question answering. We evaluate our procedure by several benchmarks and demonstrate its practical usefulness in our cognitive reasoning system.

Modern pattern recognition tasks use complex algorithms that take advantage of large datasets to make more accurate predictions than traditional algorithms such as decision trees or k-nearest-neighbor better suited to describe simple structures. While increased accuracy is often crucial, less complexity also has value. This paper proposes a training data selection algorithm that identifies multiple subsets with simple structures. A learning algorithm trained on such a subset can classify an instance belonging to the subset with better accuracy than the traditional learning algorithms. In other words, while existing pattern recognition algorithms attempt to learn a global mapping function to represent the entire dataset, we argue that an ensemble of simple local patterns may better describe the data. Hence the sub-setting algorithm identifies multiple subsets with simple local patterns by identifying similar instances in the neighborhood of an instance. This motivation has similarities to that of gradient boosted trees but focuses on the explainability of the model that is missing for boosted trees. The proposed algorithm thus balances accuracy and explainable machine learning by identifying a limited number of subsets with simple structures. We applied the proposed algorithm to the international stroke dataset to predict the probability of survival. Our bottom-up sub-setting algorithm performed on an average 15% better than the top-down decision tree learned on the entire dataset. The different decision trees learned on the identified subsets use some of the previously unused features by the whole dataset decision tree, and each subset represents a distinct population of data.

With distributed computing and mobile applications becoming ever more prevalent, synchronizing diverging replicas of the same data is a common problem. Reconciliation -- bringing two replicas of the same data structure as close as possible without overriding local changes -- is investigated in an algebraic model. Our approach is to consider two sequences of simple commands that describe the changes in the replicas compared to the original structure, and then determine the maximal subsequences of each that can be propagated to the other. The proposed command set is shown to be functionally complete, and an update detection algorithm is presented which produces a command sequence transforming the original data structure into the replica while traversing both simultaneously. Syntactical characterization is provided in terms of a rewriting system for semantically equivalent command sequences. Algebraic properties of sequence pairs that are applicable to the same data structure are investigated. Based on these results the reconciliation problem is shown to have a unique maximal solution. In addition, syntactical properties of the maximal solution allows for an efficient algorithm that produces it.

In the first part of this paper, we present a unified framework for analyzing the algorithmic complexity of any optimization problem, whether it be continuous or discrete in nature. This helps to formalize notions like "input", "size" and "complexity" in the context of general mathematical optimization, avoiding context dependent definitions which is one of the sources of difference in the treatment of complexity within continuous and discrete optimization. In the second part of the paper, we employ the language developed in the first part to study information theoretic and algorithmic complexity of {\em mixed-integer convex optimization}, which contains as a special case continuous convex optimization on the one hand and pure integer optimization on the other. We strive for the maximum possible generality in our exposition. We hope that this paper contains material that both continuous optimizers and discrete optimizers find new and interesting, even though almost all of the material presented is common knowledge in one or the other community. We see the main merit of this paper as bringing together all of this information under one unifying umbrella with the hope that this will act as yet another catalyst for more interaction across the continuous-discrete divide. In fact, our motivation behind Part I of the paper is to provide a common language for both communities.

Latent variable discovery is a central problem in data analysis with a broad range of applications in applied science. In this work, we consider data given as an invertible mixture of two statistically independent components, and assume that one of the components is observed while the other is hidden. Our goal is to recover the hidden component. For this purpose, we propose an autoencoder equipped with a discriminator. Unlike the standard nonlinear ICA problem, which was shown to be non-identifiable, in the special case of ICA we consider here, we show that our approach can recover the component of interest up to entropy-preserving transformation. We demonstrate the performance of the proposed approach on several datasets, including image synthesis, voice cloning, and fetal ECG extraction.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

The recently introduced BERT model exhibits strong performance on several language understanding benchmarks. In this paper, we describe a simple re-implementation of BERT for commonsense reasoning. We show that the attentions produced by BERT can be directly utilized for tasks such as the Pronoun Disambiguation Problem and Winograd Schema Challenge. Our proposed attention-guided commonsense reasoning method is conceptually simple yet empirically powerful. Experimental analysis on multiple datasets demonstrates that our proposed system performs remarkably well on all cases while outperforming the previously reported state of the art by a margin. While results suggest that BERT seems to implicitly learn to establish complex relationships between entities, solving commonsense reasoning tasks might require more than unsupervised models learned from huge text corpora.

In recent years, DBpedia, Freebase, OpenCyc, Wikidata, and YAGO have been published as noteworthy large, cross-domain, and freely available knowledge graphs. Although extensively in use, these knowledge graphs are hard to compare against each other in a given setting. Thus, it is a challenge for researchers and developers to pick the best knowledge graph for their individual needs. In our recent survey, we devised and applied data quality criteria to the above-mentioned knowledge graphs. Furthermore, we proposed a framework for finding the most suitable knowledge graph for a given setting. With this paper we intend to ease the access to our in-depth survey by presenting simplified rules that map individual data quality requirements to specific knowledge graphs. However, this paper does not intend to replace our previously introduced decision-support framework. For an informed decision on which KG is best for you we still refer to our in-depth survey.

We introduce a new neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in an input sequence. Such problems cannot be trivially addressed by existent approaches such as sequence-to-sequence and Neural Turing Machines, because the number of target classes in each step of the output depends on the length of the input, which is variable. Problems such as sorting variable sized sequences, and various combinatorial optimization problems belong to this class. Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention. It differs from the previous attention attempts in that, instead of using attention to blend hidden units of an encoder to a context vector at each decoder step, it uses attention as a pointer to select a member of the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net). We show Ptr-Nets can be used to learn approximate solutions to three challenging geometric problems -- finding planar convex hulls, computing Delaunay triangulations, and the planar Travelling Salesman Problem -- using training examples alone. Ptr-Nets not only improve over sequence-to-sequence with input attention, but also allow us to generalize to variable size output dictionaries. We show that the learnt models generalize beyond the maximum lengths they were trained on. We hope our results on these tasks will encourage a broader exploration of neural learning for discrete problems.

北京阿比特科技有限公司