亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generative adversarial networks (GANs) are powerful tools for learning generative models. In practice, the training may suffer from lack of convergence. GANs are commonly viewed as a two-player zero-sum game between two neural networks. Here, we leverage this game theoretic view to study the convergence behavior of the training process. Inspired by the fictitious play learning process, a novel training method, referred to as Fictitious GAN, is introduced. Fictitious GAN trains the deep neural networks using a mixture of historical models. Specifically, the discriminator (resp. generator) is updated according to the best-response to the mixture outputs from a sequence of previously trained generators (resp. discriminators). It is shown that Fictitious GAN can effectively resolve some convergence issues that cannot be resolved by the standard training approach. It is proved that asymptotically the average of the generator outputs has the same distribution as the data samples.

相關內容

Auto-regressive sequence-to-sequence models with attention mechanism have achieved state-of-the-art performance in many tasks such as machine translation and speech synthesis. These models can be difficult to train. The standard approach, teacher forcing, guides a model with reference output history during training. The problem is that the model is unlikely to recover from its mistakes during inference, where the reference output is replaced by generated output. Several approaches deal with this problem, largely by guiding the model with generated output history. To make training stable, these approaches often require a heuristic schedule or an auxiliary classifier. This paper introduces attention forcing, which guides the model with generated output history and reference attention. This approach can train the model to recover from its mistakes, in a stable fashion, without the need for a schedule or a classifier. In addition, it allows the model to generate output sequences aligned with the references, which can be important for cascaded systems like many speech synthesis systems. Experiments on speech synthesis show that attention forcing yields significant performance gain. Experiments on machine translation show that for tasks where various re-orderings of the output are valid, guiding the model with generated output history is challenging, while guiding the model with reference attention is beneficial.

In this paper, we address the hyperspectral image (HSI) classification task with a generative adversarial network and conditional random field (GAN-CRF) -based framework, which integrates a semi-supervised deep learning and a probabilistic graphical model, and make three contributions. First, we design four types of convolutional and transposed convolutional layers that consider the characteristics of HSIs to help with extracting discriminative features from limited numbers of labeled HSI samples. Second, we construct semi-supervised GANs to alleviate the shortage of training samples by adding labels to them and implicitly reconstructing real HSI data distribution through adversarial training. Third, we build dense conditional random fields (CRFs) on top of the random variables that are initialized to the softmax predictions of the trained GANs and are conditioned on HSIs to refine classification maps. This semi-supervised framework leverages the merits of discriminative and generative models through a game-theoretical approach. Moreover, even though we used very small numbers of labeled training HSI samples from the two most challenging and extensively studied datasets, the experimental results demonstrated that spectral-spatial GAN-CRF (SS-GAN-CRF) models achieved top-ranking accuracy for semi-supervised HSI classification.

In this article, we introduce a new mode for training Generative Adversarial Networks (GANs). Rather than minimizing the distance of evidence distribution $\tilde{p}(x)$ and the generative distribution $q(x)$, we minimize the distance of $\tilde{p}(x_r)q(x_f)$ and $\tilde{p}(x_f)q(x_r)$. This adversarial pattern can be interpreted as a Turing test in GANs. It allows us to use information of real samples during training generator and accelerates the whole training procedure. We even find that just proportionally increasing the size of discriminator and generator, it succeeds on 256x256 resolution without adjusting hyperparameters carefully.

Although neural network approaches achieve remarkable success on a variety of NLP tasks, many of them struggle to answer questions that require commonsense knowledge. We believe the main reason is the lack of commonsense connections between concepts. To remedy this, we provide a simple and effective method that leverages external commonsense knowledge base such as ConceptNet. We pre-train direct and indirect relational functions between concepts, and show that these pre-trained functions could be easily added to existing neural network models. Results show that incorporating commonsense-based function improves the state-of-the-art on two question answering tasks that require commonsense reasoning. Further analysis shows that our system discovers and leverages useful evidences from an external commonsense knowledge base, which is missing in existing neural network models and help derive the correct answer.

Despite recent progress in generative image modeling, successfully generating high-resolution, diverse samples from complex datasets such as ImageNet remains an elusive goal. To this end, we train Generative Adversarial Networks at the largest scale yet attempted, and study the instabilities specific to such scale. We find that applying orthogonal regularization to the generator renders it amenable to a simple "truncation trick", allowing fine control over the trade-off between sample fidelity and variety by truncating the latent space. Our modifications lead to models which set the new state of the art in class-conditional image synthesis. When trained on ImageNet at 128x128 resolution, our models (BigGANs) achieve an Inception Score (IS) of 166.3 and Frechet Inception Distance (FID) of 9.6, improving over the previous best IS of 52.52 and FID of 18.65.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Despite of the success of Generative Adversarial Networks (GANs) for image generation tasks, the trade-off between image diversity and visual quality are an well-known issue. Conventional techniques achieve either visual quality or image diversity; the improvement in one side is often the result of sacrificing the degradation in the other side. In this paper, we aim to achieve both simultaneously by improving the stability of training GANs. A key idea of the proposed approach is to implicitly regularizing the discriminator using a representative feature. For that, this representative feature is extracted from the data distribution, and then transferred to the discriminator for enforcing slow updates of the gradient. Consequently, the entire training process is stabilized because the learning curve of discriminator varies slowly. Based on extensive evaluation, we demonstrate that our approach improves the visual quality and diversity of state-of-the art GANs.

We investigate deep generative models that can exchange multiple modalities bi-directionally, e.g., generating images from corresponding texts and vice versa. A major approach to achieve this objective is to train a model that integrates all the information of different modalities into a joint representation and then to generate one modality from the corresponding other modality via this joint representation. We simply applied this approach to variational autoencoders (VAEs), which we call a joint multimodal variational autoencoder (JMVAE). However, we found that when this model attempts to generate a large dimensional modality missing at the input, the joint representation collapses and this modality cannot be generated successfully. Furthermore, we confirmed that this difficulty cannot be resolved even using a known solution. Therefore, in this study, we propose two models to prevent this difficulty: JMVAE-kl and JMVAE-h. Results of our experiments demonstrate that these methods can prevent the difficulty above and that they generate modalities bi-directionally with equal or higher likelihood than conventional VAE methods, which generate in only one direction. Moreover, we confirm that these methods can obtain the joint representation appropriately, so that they can generate various variations of modality by moving over the joint representation or changing the value of another modality.

We present FusedGAN, a deep network for conditional image synthesis with controllable sampling of diverse images. Fidelity, diversity and controllable sampling are the main quality measures of a good image generation model. Most existing models are insufficient in all three aspects. The FusedGAN can perform controllable sampling of diverse images with very high fidelity. We argue that controllability can be achieved by disentangling the generation process into various stages. In contrast to stacked GANs, where multiple stages of GANs are trained separately with full supervision of labeled intermediate images, the FusedGAN has a single stage pipeline with a built-in stacking of GANs. Unlike existing methods, which requires full supervision with paired conditions and images, the FusedGAN can effectively leverage more abundant images without corresponding conditions in training, to produce more diverse samples with high fidelity. We achieve this by fusing two generators: one for unconditional image generation, and the other for conditional image generation, where the two partly share a common latent space thereby disentangling the generation. We demonstrate the efficacy of the FusedGAN in fine grained image generation tasks such as text-to-image, and attribute-to-face generation.

北京阿比特科技有限公司