This study investigates whether the phonological features derived from the Featurally Underspecified Lexicon model can be applied in text-to-speech systems to generate native and non-native speech in English and Mandarin. We present a mapping of ARPABET/pinyin to SAMPA/SAMPA-SC and then to phonological features. This mapping was tested for whether it could lead to the successful generation of native, non-native, and code-switched speech in the two languages. We ran two experiments, one with a small dataset and one with a larger dataset. The results supported that phonological features could be used as a feasible input system for languages in or not in the train data, although further investigation is needed to improve model performance. The results lend support to FUL by presenting successfully synthesised output, and by having the output carrying a source-language accent when synthesising a language not in the training data. The TTS process stimulated human second language acquisition process and thus also confirm FUL's ability to account for acquisition.
In the field of car evaluation, more and more netizens choose to express their opinions on the Internet platform, and these comments will affect the decision-making of buyers and the trend of car word-of-mouth. As an important branch of natural language processing (NLP), sentiment analysis provides an effective research method for analyzing the sentiment types of massive car review texts. However, due to the lexical professionalism and large text noise of review texts in the automotive field, when a general sentiment analysis model is applied to car reviews, the accuracy of the model will be poor. To overcome these above challenges, we aim at the sentiment analysis task of car review texts. From the perspective of word vectors, pre-training is carried out by means of whole word mask of proprietary vocabulary in the automotive field, and then training data is carried out through the strategy of an adversarial training set. Based on this, we propose a car review text sentiment analysis model based on adversarial training and whole word mask BERT(ATWWM-BERT).
The extraction of text information in videos serves as a critical step towards semantic understanding of videos. It usually involved in two steps: (1) text recognition and (2) text classification. To localize texts in videos, we can resort to large numbers of text recognition methods based on OCR technology. However, to our knowledge, there is no existing work focused on the second step of video text classification, which will limit the guidance to downstream tasks such as video indexing and browsing. In this paper, we are the first to address this new task of video text classification by fusing multimodal information to deal with the challenging scenario where different types of video texts may be confused with various colors, unknown fonts and complex layouts. In addition, we tailor a specific module called CorrelationNet to reinforce feature representation by explicitly extracting layout information. Furthermore, contrastive learning is utilized to explore inherent connections between samples using plentiful unlabeled videos. Finally, we construct a new well-defined industrial dataset from the news domain, called TI-News, which is dedicated to building and evaluating video text recognition and classification applications. Extensive experiments on TI-News demonstrate the effectiveness of our method.
This tutorial demonstrates workflows to incorporate text data into actuarial classification and regression tasks. The main focus is on methods employing transformer-based models. A dataset of car accident descriptions with an average length of 400 words, available in English and German, and a dataset with short property insurance claims descriptions are used to demonstrate these techniques. The case studies tackle challenges related to a multi-lingual setting and long input sequences. They also show ways to interpret model output, to assess and improve model performance, by fine-tuning the models to the domain of application or to a specific prediction task. Finally, the tutorial provides practical approaches to handle classification tasks in situations with no or only few labeled data. The results achieved by using the language-understanding skills of off-the-shelf natural language processing (NLP) models with only minimal pre-processing and fine-tuning clearly demonstrate the power of transfer learning for practical applications.
An important characteristic of neural networks is their ability to learn representations of the input data with effective features for prediction, which is believed to be a key factor to their superior empirical performance. To better understand the source and benefit of feature learning in neural networks, we consider learning problems motivated by practical data, where the labels are determined by a set of class relevant patterns and the inputs are generated from these along with some background patterns. We prove that neural networks trained by gradient descent can succeed on these problems. The success relies on the emergence and improvement of effective features, which are learned among exponentially many candidates efficiently by exploiting the data (in particular, the structure of the input distribution). In contrast, no linear models on data-independent features of polynomial sizes can learn to as good errors. Furthermore, if the specific input structure is removed, then no polynomial algorithm in the Statistical Query model can learn even weakly. These results provide theoretical evidence showing that feature learning in neural networks depends strongly on the input structure and leads to the superior performance. Our preliminary experimental results on synthetic and real data also provide positive support.
Vision-and-language tasks have increasingly drawn more attention as a means to evaluate human-like reasoning in machine learning models. A popular task in the field is visual question answering (VQA), which aims to answer questions about images. However, VQA models have been shown to exploit language bias by learning the statistical correlations between questions and answers without looking into the image content: e.g., questions about the color of a banana are answered with yellow, even if the banana in the image is green. If societal bias (e.g., sexism, racism, ableism, etc.) is present in the training data, this problem may be causing VQA models to learn harmful stereotypes. For this reason, we investigate gender and racial bias in five VQA datasets. In our analysis, we find that the distribution of answers is highly different between questions about women and men, as well as the existence of detrimental gender-stereotypical samples. Likewise, we identify that specific race-related attributes are underrepresented, whereas potentially discriminatory samples appear in the analyzed datasets. Our findings suggest that there are dangers associated to using VQA datasets without considering and dealing with the potentially harmful stereotypes. We conclude the paper by proposing solutions to alleviate the problem before, during, and after the dataset collection process.
Bayesian networks have been used as a mechanism to represent the joint distribution of multiple random variables in a flexible yet interpretable manner. One major challenge in learning the structure of a network is how to model networks which include a mixture of continuous and discrete random variables, known as hybrid Bayesian networks. This paper reviews the literature on approaches to handle hybrid Bayesian networks. When working with hybrid Bayesian networks, typically one of two approaches is taken: either the data are considered to have a joint multivariate Gaussian distribution, irrespective of the true distribution, or continuous random variables are discretized, resulting in discrete Bayesian networks. In this paper, we show that a strategy to model all random variables as Gaussian outperforms the strategy which converts the continuous random variables to discrete. We demonstrate the superior performance of our strategy over the latter, theoretically and by simulation studies for various settings. Both strategies are also implemented on a childhood obesity data set. The two different strategies give rise to significant differences in the optimal graph structures, with the results of the simulation study suggesting that the inference from the strategy assuming all random variables are Gaussian is more reliable.
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.