We study the supervised clustering problem under the two-component anisotropic Gaussian mixture model in high dimensions and in the non-asymptotic setting. We first derive a lower and a matching upper bound for the minimax risk of clustering in this framework. We also show that in the high-dimensional regime, the linear discriminant analysis (LDA) classifier turns out to be sub-optimal in the minimax sense. Next, we characterize precisely the risk of $\ell_2$-regularized supervised least squares classifiers. We deduce the fact that the interpolating solution may outperform the regularized classifier, under mild assumptions on the covariance structure of the noise. Our analysis also shows that interpolation can be robust to corruption in the covariance of the noise when the signal is aligned with the "clean" part of the covariance, for the properly defined notion of alignment. To the best of our knowledge, this peculiar phenomenon has not yet been investigated in the rapidly growing literature related to interpolation. We conclude that interpolation is not only benign but can also be optimal, and in some cases robust.
Precision matrix estimation in a multivariate Gaussian model is fundamental to network estimation. Although there exist both Bayesian and frequentist approaches to this, it is difficult to obtain good Bayesian and frequentist properties under the same prior--penalty dual. To bridge this gap, our contribution is a novel prior--penalty dual that closely approximates the graphical horseshoe prior and penalty, and performs well in both Bayesian and frequentist senses. A chief difficulty with the horseshoe prior is a lack of closed form expression of the density function, which we overcome in this article. In terms of theory, we establish posterior convergence rate of the precision matrix that matches the oracle rate, in addition to the frequentist consistency of the MAP estimator. In addition, our results also provide theoretical justifications for previously developed approaches that have been unexplored so far, e.g. for the graphical horseshoe prior. Computationally efficient EM and MCMC algorithms are developed respectively for the penalized likelihood and fully Bayesian estimation problems. In numerical experiments, the horseshoe-based approaches echo their superior theoretical properties by comprehensively outperforming the competing methods. A protein--protein interaction network estimation in B-cell lymphoma is considered to validate the proposed methodology.
In this paper we propose a deep learning based numerical scheme for strongly coupled FBSDE, stemming from stochastic control. It is a modification of the deep BSDE method in which the initial value to the backward equation is not a free parameter, and with a new loss function being the weighted sum of the cost of the control problem, and a variance term which coincides with the means square error in the terminal condition. We show by a numerical example that a direct extension of the classical deep BSDE method to FBSDE, fails for a simple linear-quadratic control problem, and motivate why the new method works. Under regularity and boundedness assumptions on the exact controls of time continuous and time discrete control problems we provide an error analysis for our method. We show empirically that the method converges for three different problems, one being the one that failed for a direct extension of the deep BSDE method.
We show that solution to the Hermite-Pad\'{e} type I approximation problem leads in a natural way to a subclass of solutions of the Hirota (discrete Kadomtsev-Petviashvili) system and of its adjoint linear problem. Our result explains the appearence of various ingredients of the integrable systems theory in application to multiple orthogonal polynomials, numerical algorthms, random matrices, and in other branches of mathematical physics and applied mathematics where the Hermite-Pad\'{e} approximation problem is relevant. We present also the geometric algorithm, based on the notion of Desargues maps, of construction of solutions of the problem in the projective space over the field of rational functions. As a byproduct we obtain the corresponding generalization of the Wynn recurrence. We isolate the boundary data of the Hirota system which provide solutions to Hermite-Pad\'{e} problem showing that the corresponding reduction lowers dimensionality of the system. In particular, we obtain certain equations which, in addition to the known ones given by Paszkowski, can be considered as direct analogs of the Frobenius identities. We study the place of the reduced system within the integrability theory, which results in finding multidimensional (in the sense of number of variables) extension of the discrete-time Toda chain equations.
In this work, we propose a novel formulation for the solution of partial differential equations using finite element methods on unfitted meshes. The proposed formulation relies on the discrete extension operator proposed in the aggregated finite element method. This formulation is robust with respect to the location of the boundary/interface within the cell. One can prove enhanced stability results, not only on the physical domain, but on the whole active mesh. However, the stability constants grow exponentially with the polynomial order being used, since the underlying extension operators are defined via extrapolation. To address this issue, we introduce a new variant of aggregated finite elements, in which the extension in the physical domain is an interpolation for polynomials of order higher than two. As a result, the stability constants only grow at a polynomial rate with the order of approximation. We demonstrate that this approach enables robust high-order approximations with the aggregated finite element method.
Supervised classification techniques use training samples to learn a classification rule with small expected 0-1-loss (error probability). Conventional methods enable tractable learning and provide out-of-sample generalization by using surrogate losses instead of the 0-1-loss and considering specific families of rules (hypothesis classes). This paper presents minimax risk classifiers (MRCs) that minimize the worst-case 0-1-loss over general classification rules and provide tight performance guarantees at learning. We show that MRCs are strongly universally consistent using feature mappings given by characteristic kernels. The paper also proposes efficient optimization techniques for MRC learning and shows that the methods presented can provide accurate classification together with tight performance guarantees
In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) and provide excess population risks for some special classes of functions that are faster than the previous results of general convex and strongly convex functions. In the first part of the paper, we study the case where the population risk function satisfies the Tysbakov Noise Condition (TNC) with some parameter $\theta>1$. Specifically, we first show that under some mild assumptions on the loss functions, there is an algorithm whose output could achieve an upper bound of $\tilde{O}((\frac{1}{\sqrt{n}}+\frac{\sqrt{d\log \frac{1}{\delta}}}{n\epsilon})^\frac{\theta}{\theta-1})$ for $(\epsilon, \delta)$-DP when $\theta\geq 2$, here $n$ is the sample size and $d$ is the dimension of the space. Then we address the inefficiency issue, improve the upper bounds by $\text{Poly}(\log n)$ factors and extend to the case where $\theta\geq \bar{\theta}>1$ for some known $\bar{\theta}$. Next we show that the excess population risk of population functions satisfying TNC with parameter $\theta\geq 2$ is always lower bounded by $\Omega((\frac{d}{n\epsilon})^\frac{\theta}{\theta-1}) $ and $\Omega((\frac{\sqrt{d\log \frac{1}{\delta}}}{n\epsilon})^\frac{\theta}{\theta-1})$ for $\epsilon$-DP and $(\epsilon, \delta)$-DP, respectively. In the second part, we focus on a special case where the population risk function is strongly convex. Unlike the previous studies, here we assume the loss function is {\em non-negative} and {\em the optimal value of population risk is sufficiently small}. With these additional assumptions, we propose a new method whose output could achieve an upper bound of $O(\frac{d\log\frac{1}{\delta}}{n^2\epsilon^2}+\frac{1}{n^{\tau}})$ for any $\tau\geq 1$ in $(\epsilon,\delta)$-DP model if the sample size $n$ is sufficiently large.
The commonly quoted error rates for QMC integration with an infinite low discrepancy sequence is $O(n^{-1}\log(n)^r)$ with $r=d$ for extensible sequences and $r=d-1$ otherwise. Such rates hold uniformly over all $d$ dimensional integrands of Hardy-Krause variation one when using $n$ evaluation points. Implicit in those bounds is that for any sequence of QMC points, the integrand can be chosen to depend on $n$. In this paper we show that rates with any $r<(d-1)/2$ can hold when $f$ is held fixed as $n\to\infty$. This is accomplished following a suggestion of Erich Novak to use some unpublished results of Trojan from the 1980s as given in the information based complexity monograph of Traub, Wasilkowski and Wo\'zniakowski. The proof is made by applying a technique of Roth with the theorem of Trojan. The proof is non constructive and we do not know of any integrand of bounded variation in the sense of Hardy and Krause for which the QMC error exceeds $(\log n)^{1+\epsilon}/n$ for infinitely many $n$ when using a digital sequence such as one of Sobol's. An empirical search when $d=2$ for integrands designed to exploit known weaknesses in certain point sets showed no evidence that $r>1$ is needed. An example with $d=3$ and $n$ up to $2^{100}$ might possibly require $r>1$.
This paper is focused on the optimization approach to the solution of inverse problems. We introduce a stochastic dynamical system in which the parameter-to-data map is embedded, with the goal of employing techniques from nonlinear Kalman filtering to estimate the parameter given the data. The extended Kalman filter (which we refer to as ExKI in the context of inverse problems) can be effective for some inverse problems approached this way, but is impractical when the forward map is not readily differentiable and is given as a black box, and also for high dimensional parameter spaces because of the need to propagate large covariance matrices. Application of ensemble Kalman filters, for example use of the ensemble Kalman inversion (EKI) algorithm, has emerged as a useful tool which overcomes both of these issues: it is derivative free and works with a low-rank covariance approximation formed from the ensemble. In this paper, we work with the ExKI, EKI, and a variant on EKI which we term unscented Kalman inversion (UKI). The paper contains two main contributions. Firstly, we identify a novel stochastic dynamical system in which the parameter-to-data map is embedded. We present theory in the linear case to show exponential convergence of the mean of the filtering distribution to the solution of a regularized least squares problem. This is in contrast to previous work in which the EKI has been employed where the dynamical system used leads to algebraic convergence to an unregularized problem. Secondly, we show that the application of the UKI to this novel stochastic dynamical system yields improved inversion results, in comparison with the application of EKI to the same novel stochastic dynamical system.
Feasible interpolation is a general technique for proving proof complexity lower bounds. The monotone version of the technique converts, in its basic variant, lower bounds for monotone Boolean circuits separating two NP-sets to proof complexity lower bounds. In a generalized version of the technique, dag-like communication protocols are used instead of monotone Boolean circuits. We study three kinds of protocols and compare their strength. Our results establish the following relationships in the sense of polynomial reducibility: Protocols with equality are at least as strong as protocols with inequality and protocols with equality have the same strength as protocols with a conjunction of two inequalities. Exponential lower bounds for protocols with inequality are known. Obtaining lower bounds for protocols with equality would immediately imply lower bounds for resolution with parities (R(LIN)).
Autoencoders provide a powerful framework for learning compressed representations by encoding all of the information needed to reconstruct a data point in a latent code. In some cases, autoencoders can "interpolate": By decoding the convex combination of the latent codes for two datapoints, the autoencoder can produce an output which semantically mixes characteristics from the datapoints. In this paper, we propose a regularization procedure which encourages interpolated outputs to appear more realistic by fooling a critic network which has been trained to recover the mixing coefficient from interpolated data. We then develop a simple benchmark task where we can quantitatively measure the extent to which various autoencoders can interpolate and show that our regularizer dramatically improves interpolation in this setting. We also demonstrate empirically that our regularizer produces latent codes which are more effective on downstream tasks, suggesting a possible link between interpolation abilities and learning useful representations.