亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Health Index (HI) is crucial for evaluating system health and is important for tasks like anomaly detection and Remaining Useful Life (RUL) prediction of safety-critical systems. Real-time, meticulous monitoring of system conditions is essential, especially in manufacturing high-quality and safety-critical components such as spray coatings. However, acquiring accurate health status information (HI labels) in real scenarios can be difficult or costly because it requires continuous, precise measurements that fully capture the system's health. As a result, using datasets from systems run-to-failure, which provide limited HI labels only at the healthy and end-of-life phases, becomes a practical approach. We employ Deep Semi-supervised Anomaly Detection (DeepSAD) embeddings to tackle the challenge of extracting features associated with the system's health state. Additionally, we introduce a diversity loss to further enrich the DeepSAD embeddings. We also propose applying an alternating projection algorithm with isotonic constraints to transform the embedding into a normalized HI with an increasing trend. Validation on the PHME2010 milling dataset, a recognized benchmark with ground truth HIs, confirms the efficacy of our proposed HI estimations. Our methodology is further applied to monitor the wear states of thermal spray coatings using high-frequency voltage. These contributions facilitate more accessible and reliable HI estimation, particularly in scenarios where obtaining ground truth HI labels is impossible.

相關內容

Transformer-based approaches such as BERT4Rec and SASRec demonstrate strong performance in Next Item Recommendation (NIR) tasks. However, applying these architectures to Next-Basket Recommendation (NBR) tasks, which often involve highly repetitive interactions, is challenging due to the vast number of possible item combinations in a basket. Moreover, frequency-based methods such as TIFU-KNN and UP-CF still demonstrate strong performance in NBR tasks, frequently outperforming deep-learning approaches. This paper introduces SAFERec, a novel algorithm for NBR that enhances transformer-based architectures from NIR by incorporating item frequency information, consequently improving their applicability to NBR tasks. Extensive experiments on multiple datasets show that SAFERec outperforms all other baselines, specifically achieving an 8\% improvement in Recall@10.

In the Retrieval-Augmented Generation (RAG) system, advanced Large Language Models (LLMs) have emerged as effective Query Likelihood Models (QLMs) in an unsupervised way, which re-rank documents based on the probability of generating the query given the content of a document. However, directly prompting LLMs to approximate QLMs inherently is biased, where the estimated distribution might diverge from the actual document-specific distribution. In this study, we introduce a novel framework, $\mathrm{UR^3}$, which leverages Bayesian decision theory to both quantify and mitigate this estimation bias. Specifically, $\mathrm{UR^3}$ reformulates the problem as maximizing the probability of document generation, thereby harmonizing the optimization of query and document generation probabilities under a unified risk minimization objective. Our empirical results indicate that $\mathrm{UR^3}$ significantly enhances re-ranking, particularly in improving the Top-1 accuracy. It benefits the QA tasks by achieving higher accuracy with fewer input documents.

In the era of increasing privacy concerns and demand for personalized experiences, traditional Reinforcement Learning with Human Feedback (RLHF) frameworks face significant challenges due to their reliance on centralized data. We introduce Federated Reinforcement Learning with Human Feedback (FedRLHF), a novel framework that decentralizes the RLHF process. FedRLHF enables collaborative policy learning across multiple clients without necessitating the sharing of raw data or human feedback, thereby ensuring robust privacy preservation. Leveraging federated reinforcement learning, each client integrates human feedback locally into their reward functions and updates their policies through personalized RLHF processes. We establish rigorous theoretical foundations for FedRLHF, providing convergence guarantees, and deriving sample complexity bounds that scale efficiently with the number of clients. Empirical evaluations on the MovieLens and IMDb datasets demonstrate that FedRLHF not only preserves user privacy but also achieves performance on par with centralized RLHF, while enhancing personalization across diverse client environments.

Cross-View Geo-Localization (CVGL) involves determining the localization of drone images by retrieving the most similar GPS-tagged satellite images. However, the imaging gaps between platforms are often significant and the variations in viewpoints are substantial, which limits the ability of existing methods to effectively associate cross-view features and extract consistent and invariant characteristics. Moreover, existing methods often overlook the problem of increased computational and storage requirements when improving model performance. To handle these limitations, we propose a lightweight enhanced alignment network, called the Multi-Level Embedding and Alignment Network (MEAN). The MEAN network uses a progressive multi-level enhancement strategy, global-to-local associations, and cross-domain alignment, enabling feature communication across levels. This allows MEAN to effectively connect features at different levels and learn robust cross-view consistent mappings and modality-invariant features. Moreover, MEAN adopts a shallow backbone network combined with a lightweight branch design, effectively reducing parameter count and computational complexity. Experimental results on the University-1652 and SUES-200 datasets demonstrate that MEAN reduces parameter count by 62.17% and computational complexity by 70.99% compared to state-of-the-art models, while maintaining competitive or even superior performance. The codes will be released soon.

Consider the unsupervised classification problem in random hypergraphs under the non-uniform Hypergraph Stochastic Block Model (HSBM) with two equal-sized communities, where each edge appears independently with some probability depending only on the labels of its vertices. In this paper, the information-theoretic limits on the clustering accuracy and the strong consistency threshold are established, expressed in terms of the generalized Hellinger distance. Below the threshold, it is impossible to assign all vertices to their own communities, and the lower bound of the expected mismatch ratio is derived. On the other hand, the problem space is (sometimes) divided into two disjoint subspaces when above the threshold. When only the contracted adjacency matrix is given, with high probability, one-stage spectral algorithms succeed in assigning every vertex correctly in the subspace far away from the threshold but fail in the other one. Two subsequent refinement algorithms are proposed to improve the clustering accuracy, which attain the lowest possible mismatch ratio, previously derived from the information-theoretical perspective. The failure of spectral algorithms in the second subspace arises from the loss of information induced by tensor contraction. The origin of this loss and possible solutions to minimize the impact are presented. Moreover, different from uniform hypergraphs, strong consistency is achievable by aggregating information from all uniform layers, even if it is impossible when each layer is considered alone.

This study analyzes the performance of domain-specific Large Language Models (LLMs) for the medical field by integrating Retrieval-Augmented Generation (RAG) systems within a federated learning framework. Leveraging the inherent advantages of federated learning, such as preserving data privacy and enabling distributed computation, this research explores the integration of RAG systems with models trained under varying client configurations to optimize performance. Experimental results demonstrate that the federated learning-based models integrated with RAG systems consistently outperform their non-integrated counterparts across all evaluation metrics. This study highlights the potential of combining federated learning and RAG systems for developing domain-specific LLMs in the medical field, providing a scalable and privacy-preserving solution for enhancing text generation capabilities.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司