亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The typical point cloud sampling methods used in state estimation for mobile robots preserve a high level of point redundancy. The point redundancy slows down the estimation pipeline and can make real-time estimation drift in geometrically symmetrical and structureless environments. We propose a novel point cloud sampling method that is capable of lowering the effects of geometrical degeneracies by minimizing redundancy within the cloud. The proposed method is an alternative to the commonly used sparsification methods that normalize the density of points to comply with the constraints on the real-time capabilities of a robot. In contrast to density normalization, our method builds on the fact that linear and planar surfaces contain a high level of redundancy propagated into iterative estimation pipelines. We define the concept of gradient flow quantifying the surface underlying a point. We also show that maximizing the entropy of the gradient flow minimizes point redundancy for robot ego-motion estimation. We integrate the proposed method into the point-based KISS-ICP and feature-based LOAM odometry pipelines and evaluate it experimentally on KITTI, Hilti-Oxford, and custom datasets from multirotor UAVs. The experiments show that the proposed sampling technique outperforms state-of-the-art methods in well-conditioned as well as in geometrically-degenerated settings, in both accuracy and speed.

相關內容

LiDARs are widely used for mapping and localization in dynamic environments. However, their high cost limits their widespread adoption. On the other hand, monocular localization in LiDAR maps using inexpensive cameras is a cost-effective alternative for large-scale deployment. Nevertheless, most existing approaches struggle to generalize to new sensor setups and environments, requiring retraining or fine-tuning. In this paper, we present CMRNext, a novel approach for camera-LIDAR matching that is independent of sensor-specific parameters, generalizable, and can be used in the wild for monocular localization in LiDAR maps and camera-LiDAR extrinsic calibration. CMRNext exploits recent advances in deep neural networks for matching cross-modal data and standard geometric techniques for robust pose estimation. We reformulate the point-pixel matching problem as an optical flow estimation problem and solve the Perspective-n-Point problem based on the resulting correspondences to find the relative pose between the camera and the LiDAR point cloud. We extensively evaluate CMRNext on six different robotic platforms, including three publicly available datasets and three in-house robots. Our experimental evaluations demonstrate that CMRNext outperforms existing approaches on both tasks and effectively generalizes to previously unseen environments and sensor setups in a zero-shot manner. We make the code and pre-trained models publicly available at //cmrnext.cs.uni-freiburg.de .

Existing multi-focus image fusion (MFIF) methods often fail to preserve the uncertain transition region and detect small focus areas within large defocused regions accurately. To address this issue, this study proposes a new small-area-aware MFIF algorithm for enhancing object detection capability. First, we enhance the pixel attributes within the small focus and boundary regions, which are subsequently combined with visual saliency detection to obtain the pre-fusion results used to discriminate the distribution of focused pixels. To accurately ensure pixel focus, we consider the source image as a combination of focused, defocused, and uncertain regions and propose a three-region segmentation strategy. Finally, we design an effective pixel selection rule to generate segmentation decision maps and obtain the final fusion results. Experiments demonstrated that the proposed method can accurately detect small and smooth focus areas while improving object detection performance, outperforming existing methods in both subjective and objective evaluations. The source code is available at //github.com/ixilai/SAMF.

In real-world applications, there is often a domain shift from training to test data. This observation resulted in the development of test-time adaptation (TTA). It aims to adapt a pre-trained source model to the test data without requiring access to the source data. Thereby, most existing works are limited to the closed-set assumption, i.e. there is no category shift between source and target domain. We argue that in a realistic open-world setting a category shift can appear in addition to a domain shift. This means, individual source classes may not appear in the target domain anymore, samples of new classes may be part of the target domain or even both at the same time. Moreover, in many real-world scenarios the test data is not accessible all at once but arrives sequentially as a stream of batches demanding an immediate prediction. Hence, TTA must be applied in an online manner. To the best of our knowledge, the combination of these aspects, i.e. online source-free universal domain adaptation (online SF-UniDA), has not been studied yet. In this paper, we introduce a Contrastive Mean Teacher (COMET) tailored to this novel scenario. It applies a contrastive loss to rebuild a feature space where the samples of known classes build distinct clusters and the samples of new classes separate well from them. It is complemented by an entropy loss which ensures that the classifier output has a small entropy for samples of known classes and a large entropy for samples of new classes to be easily detected and rejected as unknown. To provide the losses with reliable pseudo labels, they are embedded into a mean teacher (MT) framework. We evaluate our method across two datasets and all category shifts to set an initial benchmark for online SF-UniDA. Thereby, COMET yields state-of-the-art performance and proves to be consistent and robust across a variety of different scenarios.

Machine unlearning requires removing the information of forgetting data while keeping the necessary information of remaining data. Despite recent advancements in this area, existing methodologies mainly focus on the effect of removing forgetting data without considering the negative impact this can have on the information of the remaining data, resulting in significant performance degradation after data removal. Although some methods try to repair the performance of remaining data after removal, the forgotten information can also return after repair. Such an issue is due to the intricate intertwining of the forgetting and remaining data. Without adequately differentiating the influence of these two kinds of data on the model, existing algorithms take the risk of either inadequate removal of the forgetting data or unnecessary loss of valuable information from the remaining data. To address this shortcoming, the present study undertakes a causal analysis of the unlearning and introduces a novel framework termed Causal Machine Unlearning (CaMU). This framework adds intervention on the information of remaining data to disentangle the causal effects between forgetting data and remaining data. Then CaMU eliminates the causal impact associated with forgetting data while concurrently preserving the causal relevance of the remaining data. Comprehensive empirical results on various datasets and models suggest that CaMU enhances performance on the remaining data and effectively minimizes the influences of forgetting data. Notably, this work is the first to interpret deep model unlearning tasks from a new perspective of causality and provide a solution based on causal analysis, which opens up new possibilities for future research in deep model unlearning.

Moving object segmentation (MOS) provides a reliable solution for detecting traffic participants and thus is of great interest in the autonomous driving field. Dynamic capture is always critical in the MOS problem. Previous methods capture motion features from the range images directly. Differently, we argue that the residual maps provide greater potential for motion information, while range images contain rich semantic guidance. Based on this intuition, we propose MF-MOS, a novel motion-focused model with a dual-branch structure for LiDAR moving object segmentation. Novelly, we decouple the spatial-temporal information by capturing the motion from residual maps and generating semantic features from range images, which are used as movable object guidance for the motion branch. Our straightforward yet distinctive solution can make the most use of both range images and residual maps, thus greatly improving the performance of the LiDAR-based MOS task. Remarkably, our MF-MOS achieved a leading IoU of 76.7% on the MOS leaderboard of the SemanticKITTI dataset upon submission, demonstrating the current state-of-the-art performance. The implementation of our MF-MOS has been released at //github.com/SCNU-RISLAB/MF-MOS.

Flattening is essential in computer vision by converting multi-dimensional feature maps or images into one-dimensional vectors. However, existing flattening approaches neglect the preservation of local smoothness, which can impact the representational learning capacity of vision models. In this paper, we propose Hilbert curve flattening as an innovative method to preserve locality in flattened matrices. We compare it with the commonly used Zigzag operation and demonstrate that Hilbert curve flattening can better retain the spatial relationships and local smoothness of the original grid structure, while maintaining robustness against the input scale variance. And, we introduce the Localformer, a vision transformer architecture that incorporates Hilbert token sampling with a token aggregator to enhance its locality bias. Extensive experiments on image classification and semantic segmentation tasks demonstrate that the Localformer outperforms baseline models consistently. We also show it brings consistent performance boosts for other popular architectures (e.g. MLP-Mixer).

An effective multi-turn instruction-following assistant can be developed by creating a simulator that can generate useful interaction data. Apart from relying on its intrinsic weights, an ideal user simulator should also be able to bootstrap external knowledge rapidly in its raw form to simulate the multifarious diversity of text available over the internet. Previous user simulators generally lacked diversity, were mostly closed domain, and necessitated rigid schema making them inefficient to rapidly scale to incorporate external knowledge. In this regard, we introduce, Kaucus, a Knowledge-Augmented User Simulator framework, to outline a process of creating diverse user simulators, that can seamlessly exploit external knowledge as well as benefit downstream assistant model training. Through two GPT-J based simulators viz., a Retrieval Augmented Simulator and a Summary Controlled Simulator we generate diverse simulator-assistant interactions. Through reward and preference model-based evaluations, we find that these interactions serve as useful training data and create more helpful downstream assistants. We also find that incorporating knowledge through retrieval augmentation or summary control helps create better assistants.

Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a deep network into an embedding ensemble and formulate training this ensemble as an online gradient boosting problem. Each learner receives a reweighted training sample from the previous learners. Further, we propose two loss functions which increase the diversity in our ensemble. These loss functions can be applied either for weight initialization or during training. Together, our contributions leverage large embedding sizes more effectively by significantly reducing correlation of the embedding and consequently increase retrieval accuracy of the embedding. Our method works with any differentiable loss function and does not introduce any additional parameters during test time. We evaluate our metric learning method on image retrieval tasks and show that it improves over state-of-the-art methods on the CUB 200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and VehicleID datasets.

北京阿比特科技有限公司