Large Language Models (LLMs), despite their remarkable performance across a wide range of tasks, necessitate substantial GPU memory and consume significant computational resources. Beyond the memory taken up by model weights, the memory used by the KV cache rises linearly with sequence length, becoming a primary bottleneck for inference. In this paper, we introduce an innovative method for optimizing the KV cache, which considerably minimizes its memory footprint. Upon thorough investigation, we discover that in most Transformer models, (i) there is a striking similarity between adjacent tokens' query vectors, and (ii) the attention calculation of the current query can rely exclusively on the attention information of a small fraction of preceding queries. Based on these observations, we present CORM, a KV cache eviction policy that dynamically retains essential key-value pairs for inference without the need for model fine-tuning. Our validation shows that CORM reduces the inference memory usage of KV cache by up to 70\% with negligible performance degradation across six tasks in LongBench. Furthermore, we demonstrate that CORM is compatible with GQA for further compression rate.
Vision Language Models (VLMs) have achieved impressive performance in 2D image understanding, however they are still struggling with spatial understanding which is the foundation of Embodied AI. In this paper, we propose SpatialBot for better spatial understanding by feeding both RGB and depth images. Additionally, we have constructed the SpatialQA dataset, which involves multi-level depth-related questions to train VLMs for depth understanding. Finally, we present SpatialBench to comprehensively evaluate VLMs' capabilities in spatial understanding at different levels. Extensive experiments on our spatial-understanding benchmark, general VLM benchmarks and Embodied AI tasks, demonstrate the remarkable improvements of SpatialBot trained on SpatialQA. The model, code and data are available at //github.com/BAAI-DCAI/SpatialBot.
Multimodal emotion recognition in conversation (MERC) has garnered substantial research attention recently. Existing MERC methods face several challenges: (1) they fail to fully harness direct inter-modal cues, possibly leading to less-than-thorough cross-modal modeling; (2) they concurrently extract information from the same and different modalities at each network layer, potentially triggering conflicts from the fusion of multi-source data; (3) they lack the agility required to detect dynamic sentimental changes, perhaps resulting in inaccurate classification of utterances with abrupt sentiment shifts. To address these issues, a novel approach named GraphSmile is proposed for tracking intricate emotional cues in multimodal dialogues. GraphSmile comprises two key components, i.e., GSF and SDP modules. GSF ingeniously leverages graph structures to alternately assimilate inter-modal and intra-modal emotional dependencies layer by layer, adequately capturing cross-modal cues while effectively circumventing fusion conflicts. SDP is an auxiliary task to explicitly delineate the sentiment dynamics between utterances, promoting the model's ability to distinguish sentimental discrepancies. Furthermore, GraphSmile is effortlessly applied to multimodal sentiment analysis in conversation (MSAC), forging a unified multimodal affective model capable of executing MERC and MSAC tasks. Empirical results on multiple benchmarks demonstrate that GraphSmile can handle complex emotional and sentimental patterns, significantly outperforming baseline models.
Large Language Models (LLMs) rely on instruction samples for alignment, but creating these datasets poses challenges, particularly in expert-dependent tasks like coding, which can be cost-prohibitive. One approach to mitigate these challenges is synthesizing data using another LLM. In this paper, we introduce a scalable method for generating synthetic instructions to enhance the code generation capability of LLMs. The proposed algorithm, Genetic-Instruct, mimics evolutionary processes, utilizing self-instruction to create numerous synthetic samples from a limited number of seeds. Genetic-Instruct is designed for efficient scaling of the generation process. Fine-tuning multiple coding LLMs with the synthetic samples demonstrates a significant improvement in their code generation accuracy compared to the baselines.
Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at //github.com/HCPLab-SYSU/Embodied_AI_Paper_List.
Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks, which often lag behind the rapidly evolving demands of MLLM evaluation. This paper outlines and validates GenCeption, a novel, annotation-free evaluation method that requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate. This approach eliminates the need for costly data annotation, minimizes the risk of training data contamination, results in slower benchmark saturation, and avoids the illusion of emerging abilities. Inspired by the DrawCeption game, GenCeption begins with a non-textual sample and proceeds through iterative description and generation steps. The semantic drift across iterations is quantified using the GC@T metric. Based on the GenCeption method, we establish the MMECeption benchmark for evaluating Vision LLMs (VLLMs), and compare performance of several popular VLLMs and human annotators. Our empirical results validate GenCeption's effectiveness, demonstrating strong correlations with established VLLM benchmarks. VLLMs still significantly lack behind human performance and struggle especially with text-intensive tasks.
Multimodal Entity Linking (MEL) is a crucial task that aims at linking ambiguous mentions within multimodal contexts to the referent entities in a multimodal knowledge base, such as Wikipedia. Existing methods focus heavily on using complex mechanisms and extensive model tuning methods to model the multimodal interaction on specific datasets. However, these methods overcomplicate the MEL task and overlook the visual semantic information, which makes them costly and hard to scale. Moreover, these methods can not solve the issues like textual ambiguity, redundancy, and noisy images, which severely degrade their performance. Fortunately, the advent of Large Language Models (LLMs) with robust capabilities in text understanding and reasoning, particularly Multimodal Large Language Models (MLLMs) that can process multimodal inputs, provides new insights into addressing this challenge. However, how to design a universally applicable LLMs-based MEL approach remains a pressing challenge. To this end, we propose UniMEL, a unified framework which establishes a new paradigm to process multimodal entity linking tasks using LLMs. In this framework, we employ LLMs to augment the representation of mentions and entities individually by integrating textual and visual information and refining textual information. Subsequently, we employ the embedding-based method for retrieving and re-ranking candidate entities. Then, with only ~0.26% of the model parameters fine-tuned, LLMs can make the final selection from the candidate entities. Extensive experiments on three public benchmark datasets demonstrate that our solution achieves state-of-the-art performance, and ablation studies verify the effectiveness of all modules. Our code is available at //anonymous.4open.science/r/UniMEL/.
With the emergence of Transformers and Vision-Language Models (VLMs) such as CLIP, large pre-trained models have become a common strategy to enhance performance in Continual Learning scenarios. This led to the development of numerous prompting strategies to effectively fine-tune transformer-based models without succumbing to catastrophic forgetting. However, these methods struggle to specialize the model on domains significantly deviating from the pre-training and preserving its zero-shot capabilities. In this work, we propose Continual Generative training for Incremental prompt-Learning, a novel approach to mitigate forgetting while adapting a VLM, which exploits generative replay to align prompts to tasks. We also introduce a new metric to evaluate zero-shot capabilities within CL benchmarks. Through extensive experiments on different domains, we demonstrate the effectiveness of our framework in adapting to new tasks while improving zero-shot capabilities. Further analysis reveals that our approach can bridge the gap with joint prompt tuning. The codebase is available at //github.com/aimagelab/mammoth.
Despite the advances in the abstractive summarization task using Large Language Models (LLM), there is a lack of research that asses their abilities to easily adapt to different domains. We evaluate the domain adaptation abilities of a wide range of LLMs on the summarization task across various domains in both fine-tuning and in-context learning settings. We also present AdaptEval, the first domain adaptation evaluation suite. AdaptEval includes a domain benchmark and a set of metrics to facilitate the analysis of domain adaptation. Our results demonstrate that LLMs exhibit comparable performance in the in-context learning setting, regardless of their parameter scale.
Biologically plausible Spiking Neural Networks (SNNs), characterized by spike sparsity, are growing tremendous attention over intellectual edge devices and critical bio-medical applications as compared to artificial neural networks (ANNs). However, there is a considerable risk from malicious attempts to extract white-box information (i.e., weights) from SNNs, as attackers could exploit well-trained SNNs for profit and white-box adversarial concerns. There is a dire need for intellectual property (IP) protective measures. In this paper, we present a novel secure software-hardware co-designed RRAM-based neuromorphic accelerator for protecting the IP of SNNs. Software-wise, we design a tailored genetic algorithm with classic XOR encryption to target the least number of weights that need encryption. From a hardware perspective, we develop a low-energy decryption module, meticulously designed to provide zero decryption latency. Extensive results from various datasets, including NMNIST, DVSGesture, EEGMMIDB, Braille Letter, and SHD, demonstrate that our proposed method effectively secures SNNs by encrypting a minimal fraction of stealthy weights, only 0.00005% to 0.016% weight bits. Additionally, it achieves a substantial reduction in energy consumption, ranging from x59 to x6780, and significantly lowers decryption latency, ranging from x175 to x4250. Moreover, our method requires as little as one sample per class in dataset for encryption and addresses hessian/gradient-based search insensitive problems. This strategy offers a highly efficient and flexible solution for securing SNNs in diverse applications.
We propose FoundPose, a model-based method for 6D pose estimation of unseen objects from a single RGB image. The method can quickly onboard new objects using their 3D models without requiring any object- or task-specific training. In contrast, existing methods typically pre-train on large-scale, task-specific datasets in order to generalize to new objects and to bridge the image-to-model domain gap. We demonstrate that such generalization capabilities can be observed in a recent vision foundation model trained in a self-supervised manner. Specifically, our method estimates the object pose from image-to-model 2D-3D correspondences, which are established by matching patch descriptors from the recent DINOv2 model between the image and pre-rendered object templates. We find that reliable correspondences can be established by kNN matching of patch descriptors from an intermediate DINOv2 layer. Such descriptors carry stronger positional information than descriptors from the last layer, and we show their importance when semantic information is ambiguous due to object symmetries or a lack of texture. To avoid establishing correspondences against all object templates, we develop an efficient template retrieval approach that integrates the patch descriptors into the bag-of-words representation and can promptly propose a handful of similarly looking templates. Additionally, we apply featuremetric alignment to compensate for discrepancies in the 2D-3D correspondences caused by coarse patch sampling. The resulting method noticeably outperforms existing RGB methods for refinement-free pose estimation on the standard BOP benchmark with seven diverse datasets and can be seamlessly combined with an existing render-and-compare refinement method to achieve RGB-only state-of-the-art results. Project page: evinpinar.github.io/foundpose.