This paper studies the problem of computing quasi-upward planar drawings of bimodal plane digraphs with minimum curve complexity, i.e., drawings such that the maximum number of bends per edge is minimized. We prove that every bimodal plane digraph admits a quasi-upward planar drawing with curve complexity two, which is worst-case optimal. We also show that the problem of minimizing the curve complexity in a quasi-upward planar drawing can be modeled as a min-cost flow problem on a unit-capacity planar flow network. This gives rise to an $\tilde{O}(m^\frac{4}{3})$-time algorithm that computes a quasi-upward planar drawing with minimum curve complexity; in addition, the drawing has the minimum number of bends when no edge can be bent more than twice. For a contrast, we show bimodal planar digraphs whose bend-minimum quasi-upward planar drawings require linear curve complexity even in the variable embedding setting.
Hyperparameter optimization (HPO) is generally treated as a bi-level optimization problem that involves fitting a (probabilistic) surrogate model to a set of observed hyperparameter responses, e.g. validation loss, and consequently maximizing an acquisition function using a surrogate model to identify good hyperparameter candidates for evaluation. The choice of a surrogate and/or acquisition function can be further improved via knowledge transfer across related tasks. In this paper, we propose a novel transfer learning approach, defined within the context of model-based reinforcement learning, where we represent the surrogate as an ensemble of probabilistic models that allows trajectory sampling. We further propose a new variant of model predictive control which employs a simple look-ahead strategy as a policy that optimizes a sequence of actions, representing hyperparameter candidates to expedite HPO. Our experiments on three meta-datasets comparing to state-of-the-art HPO algorithms including a model-free reinforcement learning approach show that the proposed method can outperform all baselines by exploiting a simple planning-based policy.
Stereoscopic projection mapping (PM) allows a user to see a three-dimensional (3D) computer-generated (CG) object floating over physical surfaces of arbitrary shapes around us using projected imagery. However, the current stereoscopic PM technology only satisfies binocular cues and is not capable of providing correct focus cues, which causes a vergence--accommodation conflict (VAC). Therefore, we propose a multifocal approach to mitigate VAC in stereoscopic PM. Our primary technical contribution is to attach electrically focus-tunable lenses (ETLs) to active shutter glasses to control both vergence and accommodation. Specifically, we apply fast and periodical focal sweeps to the ETLs, which causes the "virtual image'" (as an optical term) of a scene observed through the ETLs to move back and forth during each sweep period. A 3D CG object is projected from a synchronized high-speed projector only when the virtual image of the projected imagery is located at a desired distance. This provides an observer with the correct focus cues required. In this study, we solve three technical issues that are unique to stereoscopic PM: (1) The 3D CG object is displayed on non-planar and even moving surfaces; (2) the physical surfaces need to be shown without the focus modulation; (3) the shutter glasses additionally need to be synchronized with the ETLs and the projector. We also develop a novel compensation technique to deal with the "lens breathing" artifact that varies the retinal size of the virtual image through focal length modulation. Further, using a proof-of-concept prototype, we demonstrate that our technique can present the virtual image of a target 3D CG object at the correct depth. Finally, we validate the advantage provided by our technique by comparing it with conventional stereoscopic PM using a user study on a depth-matching task.
Self size-estimating feedforward network (SSFN) is a feedforward multilayer network. For the existing SSFN, a part of each weight matrix is trained using a layer-wise convex optimization approach (a supervised training), while the other part is chosen as a random matrix instance (an unsupervised training). In this article, the use of deterministic transforms instead of random matrix instances for the SSFN weight matrices is explored. The use of deterministic transforms provides a reduction in computational complexity. The use of several deterministic transforms is investigated, such as discrete cosine transform, Hadamard transform, Hartley transform, and wavelet transforms. The choice of a deterministic transform among a set of transforms is made in an unsupervised manner. To this end, two methods based on features' statistical parameters are developed. The proposed methods help to design a neural net where deterministic transforms can vary across its layers' weight matrices. The effectiveness of the proposed approach vis-a-vis the SSFN is illustrated for object classification tasks using several benchmark datasets.
The quaternion offset linear canonical transform (QOLCT) which is time shifted and frequency modulated version of the quaternion linear canonical transform (QLCT) provides a more general framework of most existing signal processing tools. For the generalized QOLCT, the classical Heisenbergs and Liebs uncertainty principles have been studied recently. In this paper, we first define the shorttime quaternion offset linear canonical transform (STQOLCT) and drive its relationship with the quaternion Fourier transform (QFT). The crux of the paper lies in the generalization of several well known uncertainty principles for the STQOLCT, including Donoho Starks uncertainty principle, Hardys uncertainty principle, Beurlings uncertainty principle, and Logarithmic uncertainty principle.
The classical approach to design a system is based on a deterministic perspective where the assumption is that the system and its environment are fully predictable, and their behaviour is completely known to the designer. Although this approach may work fairly well for regular design problems, it is not satisfactory for the design of highly sensitive and complex systems where significant resources and even lives are at risk. In addition it can results in extra costs of over-designing for the sake of safety and reliability. In this paper, a risk-based design framework using Simulation Based Probabilistic Risk Assessment (SIMPRA) methodology is proposed. SIMPRA allows the designer to use the knowledge that can be expected to exist at the design stage to identify how deviations can occur; and then apply these high-level scenarios to a rich simulation model of the system to generate detailed scenarios and identify the probability and consequences of these scenarios. SIMPRA has three main modules including Simulator, Planner and Scheduler, and it approach is much more efficient in covering the large space of possible scenarios as compared with, for example, biased Monte Carlo simulations because of the Planner module which uses engineering knowledge to guide the simulation process. The value-added of this approach is that it enables the designer to observe system behaviour under many different conditions. This process will lead to a risk-informed design in which the risk of negative consequences is either eliminated entirely or reduced to an acceptable range. For illustrative purposes, an earth observation satellite system example is introduced.
We show that it is provable in PA that there is an arithmetically definable sequence $\{\phi_{n}:n \in \omega\}$ of $\Pi^{0}_{2}$-sentences, such that - PRA+$\{\phi_{n}:n \in \omega\}$ is $\Pi^{0}_{2}$-sound and $\Pi^{0}_{1}$-complete - the length of $\phi_{n}$ is bounded above by a polynomial function of $n$ with positive leading coefficient - PRA+$\phi_{n+1}$ always proves 1-consistency of PRA+$\phi_{n}$. One has that the growth in logical strength is in some sense "as fast as possible", manifested in the fact that the total general recursive functions whose totality is asserted by the true $\Pi^{0}_{2}$-sentences in the sequence are cofinal growth-rate-wise in the set of all total general recursive functions. We then develop an argument which makes use of a sequence of sentences constructed by an application of the diagonal lemma, which are generalisations in a broad sense of Hugh Woodin's "Tower of Hanoi" construction as outlined in his essay "Tower of Hanoi" in Chapter 18 of the anthology "Truth in Mathematics". The argument establishes the result that it is provable in PA that $P \neq NP$. We indicate how to pull the argument all the way down into EFA.
Retrosynthetic planning is a fundamental problem in chemistry for finding a pathway of reactions to synthesize a target molecule. Recently, search algorithms have shown promising results for solving this problem by using deep neural networks (DNNs) to expand their candidate solutions, i.e., adding new reactions to reaction pathways. However, the existing works on this line are suboptimal; the retrosynthetic planning problem requires the reaction pathways to be (a) represented by real-world reactions and (b) executable using "building block" molecules, yet the DNNs expand reaction pathways without fully incorporating such requirements. Motivated by this, we propose an end-to-end framework for directly training the DNNs towards generating reaction pathways with the desirable properties. Our main idea is based on a self-improving procedure that trains the model to imitate successful trajectories found by itself. We also propose a novel reaction augmentation scheme based on a forward reaction model. Our experiments demonstrate that our scheme significantly improves the success rate of solving the retrosynthetic problem from 86.84% to 96.32% while maintaining the performance of DNN for predicting valid reactions.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
Lane detection is to detect lanes on the road and provide the accurate location and shape of each lane. It severs as one of the key techniques to enable modern assisted and autonomous driving systems. However, several unique properties of lanes challenge the detection methods. The lack of distinctive features makes lane detection algorithms tend to be confused by other objects with similar local appearance. Moreover, the inconsistent number of lanes on a road as well as diverse lane line patterns, e.g. solid, broken, single, double, merging, and splitting lines further hamper the performance. In this paper, we propose a deep neural network based method, named LaneNet, to break down the lane detection into two stages: lane edge proposal and lane line localization. Stage one uses a lane edge proposal network for pixel-wise lane edge classification, and the lane line localization network in stage two then detects lane lines based on lane edge proposals. Please note that the goal of our LaneNet is built to detect lane line only, which introduces more difficulties on suppressing the false detections on the similar lane marks on the road like arrows and characters. Despite all the difficulties, our lane detection is shown to be robust to both highway and urban road scenarios method without relying on any assumptions on the lane number or the lane line patterns. The high running speed and low computational cost endow our LaneNet the capability of being deployed on vehicle-based systems. Experiments validate that our LaneNet consistently delivers outstanding performances on real world traffic scenarios.
We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.