亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adversarial training aims to reduce the problematic susceptibility of modern neural networks to small data perturbations. Surprisingly, overfitting is a major concern in adversarial training of neural networks despite being mostly absent in standard training. We provide here theoretical evidence for this peculiar ``robust overfitting'' phenomenon. Subsequently, we advance a novel loss function which we show both theoretically as well as empirically to enjoy a certified level of robustness against data evasion and poisoning attacks while ensuring guaranteed generalization. We indicate through careful numerical experiments that our resulting holistic robust (HR) training procedure yields SOTA performance in terms of adversarial error loss. Finally, we indicate that HR training can be interpreted as a direct extension of adversarial training and comes with a negligible additional computational burden.

相關內容

Gaussian process regression is a well-established Bayesian machine learning method. We propose a new approach to Gaussian process regression using quantum kernels based on parameterized quantum circuits. By employing a hardware-efficient feature map and careful regularization of the Gram matrix, we demonstrate that the variance information of the resulting quantum Gaussian process can be preserved. We also show that quantum Gaussian processes can be used as a surrogate model for Bayesian optimization, a task that critically relies on the variance of the surrogate model. To demonstrate the performance of this quantum Bayesian optimization algorithm, we apply it to the hyperparameter optimization of a machine learning model which performs regression on a real-world dataset. We benchmark the quantum Bayesian optimization against its classical counterpart and show that quantum version can match its performance.

Adversarial training is an effective learning technique to improve the robustness of deep neural networks. In this study, the influence of adversarial training on deep learning models in terms of fairness, robustness, and generalization is theoretically investigated under more general perturbation scope that different samples can have different perturbation directions (the adversarial and anti-adversarial directions) and varied perturbation bounds. Our theoretical explorations suggest that the combination of adversaries and anti-adversaries (samples with anti-adversarial perturbations) in training can be more effective in achieving better fairness between classes and a better tradeoff between robustness and generalization in some typical learning scenarios (e.g., noisy label learning and imbalance learning) compared with standard adversarial training. On the basis of our theoretical findings, a more general learning objective that combines adversaries and anti-adversaries with varied bounds on each training sample is presented. Meta learning is utilized to optimize the combination weights. Experiments on benchmark datasets under different learning scenarios verify our theoretical findings and the effectiveness of the proposed methodology.

Graph neural networks (GNNs) have recently emerged as a promising learning paradigm in learning graph-structured data and have demonstrated wide success across various domains such as recommendation systems, social networks, and electronic design automation (EDA). Like other deep learning (DL) methods, GNNs are being deployed in sophisticated modern hardware systems, as well as dedicated accelerators. However, despite the popularity of GNNs and the recent efforts of bringing GNNs to hardware, the fault tolerance and resilience of GNNs have generally been overlooked. Inspired by the inherent algorithmic resilience of DL methods, this paper conducts, for the first time, a large-scale and empirical study of GNN resilience, aiming to understand the relationship between hardware faults and GNN accuracy. By developing a customized fault injection tool on top of PyTorch, we perform extensive fault injection experiments on various GNN models and application datasets. We observe that the error resilience of GNN models varies by orders of magnitude with respect to different models and application datasets. Further, we explore a low-cost error mitigation mechanism for GNN to enhance its resilience. This GNN resilience study aims to open up new directions and opportunities for future GNN accelerator design and architectural optimization.

While Feedforward Neural Networks (FNNs) have achieved remarkable success in various tasks, they are vulnerable to adversarial examples. Several techniques have been developed to verify the adversarial robustness of FNNs, but most of them focus on robustness verification against the local perturbation neighborhood of a single data point. There is still a large research gap in global robustness analysis. The global-robustness verifiable framework DeepGlobal has been proposed to identify \textit{all} possible Adversarial Dangerous Regions (ADRs) of FNNs, not limited to data samples in a test set. In this paper, we propose a complete specification and implementation of DeepGlobal utilizing the SMT solver Z3 for more explicit definition, and propose several improvements to DeepGlobal for more efficient verification. To evaluate the effectiveness of our implementation and improvements, we conduct extensive experiments on a set of benchmark datasets. Visualization of our experiment results shows the validity and effectiveness of the approach.

Label noise is a significant obstacle in deep learning model training. It can have a considerable impact on the performance of image classification models, particularly deep neural networks, which are especially susceptible because they have a strong propensity to memorise noisy labels. In this paper, we have examined the fundamental concept underlying related label noise approaches. A transition matrix estimator has been created, and its effectiveness against the actual transition matrix has been demonstrated. In addition, we examined the label noise robustness of two convolutional neural network classifiers with LeNet and AlexNet designs. The two FashionMINIST datasets have revealed the robustness of both models. We are not efficiently able to demonstrate the influence of the transition matrix noise correction on robustness enhancements due to our inability to correctly tune the complex convolutional neural network model due to time and computing resource constraints. There is a need for additional effort to fine-tune the neural network model and explore the precision of the estimated transition model in future research.

Vision Transformer (ViT) is known to be highly nonlinear like other classical neural networks and could be easily fooled by both natural and adversarial patch perturbations. This limitation could pose a threat to the deployment of ViT in the real industrial environment, especially in safety-critical scenarios. In this work, we propose PatchCensor, aiming to certify the patch robustness of ViT by applying exhaustive testing. We try to provide a provable guarantee by considering the worst patch attack scenarios. Unlike empirical defenses against adversarial patches that may be adaptively breached, certified robust approaches can provide a certified accuracy against arbitrary attacks under certain conditions. However, existing robustness certifications are mostly based on robust training, which often requires substantial training efforts and the sacrifice of model performance on normal samples. To bridge the gap, PatchCensor seeks to improve the robustness of the whole system by detecting abnormal inputs instead of training a robust model and asking it to give reliable results for every input, which may inevitably compromise accuracy. Specifically, each input is tested by voting over multiple inferences with different mutated attention masks, where at least one inference is guaranteed to exclude the abnormal patch. This can be seen as complete-coverage testing, which could provide a statistical guarantee on inference at the test time. Our comprehensive evaluation demonstrates that PatchCensor is able to achieve high certified accuracy (e.g. 67.1% on ImageNet for 2%-pixel adversarial patches), significantly outperforming state-of-the-art techniques while achieving similar clean accuracy (81.8% on ImageNet). Meanwhile, our technique also supports flexible configurations to handle different adversarial patch sizes (up to 25%) by simply changing the masking strategy.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司