亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the increasing computing power, using data-driven approaches to co-design a robot's morphology and controller has become a promising way. However, most existing data-driven methods require training the controller for each morphology to calculate fitness, which is time-consuming. In contrast, the dual-network framework utilizes data collected by individual networks under a specific morphology to train a population network that provides a surrogate function for morphology optimization. This approach replaces the traditional evaluation of a diverse set of candidates, thereby speeding up the training. Despite considerable results, the online training of both networks impedes their performance. To address this issue, we propose a concurrent network framework that combines online and offline reinforcement learning (RL) methods. By leveraging the behavior cloning term in a flexible manner, we achieve an effective combination of both networks. We conducted multiple sets of comparative experiments in the simulator and found that the proposed method effectively addresses issues present in the dual-network framework, leading to overall algorithmic performance improvement. Furthermore, we validated the algorithm on a real robot, demonstrating its feasibility in a practical application.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際(ji)網絡會議(yi)。 Publisher:IFIP。 SIT:

Unsupervised learning has become a staple in classical machine learning, successfully identifying clustering patterns in data across a broad range of domain applications. Surprisingly, despite its accuracy and elegant simplicity, unsupervised learning has not been sufficiently exploited in the realm of phylogenetic tree inference. The main reason for the delay in adoption of unsupervised learning in phylogenetics is the lack of a meaningful, yet simple, way of embedding phylogenetic trees into a vector space. Here, we propose the simple yet powerful split-weight embedding which allows us to fit standard clustering algorithms to the space of phylogenetic trees. We show that our split-weight embedded clustering is able to recover meaningful evolutionary relationships in simulated and real (Adansonia baobabs) data.

While it is important to make implantable brain-machine interfaces (iBMI) wireless to increase patient comfort and safety, the trend of increased channel count in recent neural probes poses a challenge due to the concomitant increase in the data rate. Extracting information from raw data at the source by using edge computing is a promising solution to this problem, with integrated intention decoders providing the best compression ratio. In this work, we compare different neural networks (NN) for motor decoding in terms of accuracy and implementation cost. We further show that combining traditional signal processing techniques with machine learning ones deliver surprisingly good performance even with simple NNs. Adding a block Bidirectional Bessel filter provided maximum gains of $\approx 0.05$, $0.04$ and $0.03$ in $R^2$ for ANN\_3d, SNN\_3D and ANN models, while the gains were lower ($\approx 0.02$ or less) for LSTM and SNN\_streaming models. Increasing training data helped improve the $R^2$ of all models by $0.03-0.04$ indicating they have more capacity for future improvement. In general, LSTM and SNN\_streaming models occupy the high and low ends of the pareto curves (for accuracy vs. memory/operations) respectively while SNN\_3D and ANN\_3D occupy intermediate positions. Our work presents state of the art results for this dataset and paves the way for decoder-integrated-implants of the future.

With the development of internet of things technologies, tremendous sensor audio data has been produced, which poses great challenges to audio-based event detection in smart cities. In this paper, we target a challenging audio-based event detection task, namely, text-to-audio grounding. In addition to precisely localizing all of the desired on- and off-sets in the untrimmed audio, this challenging new task requires extensive acoustic and linguistic comprehension as well as the reasoning for the crossmodal matching relations between the audio and query. The current approaches often treat the query as an entire one through a global query representation in order to address those issues. We contend that this strategy has several drawbacks. Firstly, the interactions between the query and the audio are not fully utilized. Secondly, it has not distinguished the importance of different keywords in a query. In addition, since the audio clips are of arbitrary lengths, there exist many segments which are irrelevant to the query but have not been filtered out in the approach. This further hinders the effective grounding of desired segments. Motivated by the above concerns, a novel Cross-modal Graph Interaction (CGI) model is proposed to comprehensively model the relations between the words in a query through a novel language graph. To capture the fine-grained relevances between the audio and query, a cross-modal attention module is introduced to generate snippet-specific query representations and automatically assign higher weights to keywords with more important semantics. Furthermore, we develop a cross-gating module for the audio and query to weaken irrelevant parts and emphasize the important ones.

This research proposes an enhanced measurement method for VoIP quality assessment which provides an improvement to accuracy and reliability. To improve the objective measurement tool called the simplified E-model for the selected codec, G.729, it has been enhanced by utilizing a subjective MOS prediction model based on native Thai users, who use the Thai-tonal language. Then, the different results from the simplified E-model and subjective MOS prediction model were used to create the Bias function, before adding to the simplified E-model. Finally, it has been found that the outputs from the enhanced simplified E-model for the G.729 codec shows better accuracy when compared to the original simplified E-model, specially, after the enhanced model has been evaluated with 4 test sets. The major contribution of this enhancement is that errors are reduced by 58.87 % when compared to the generic simplified E-model. That means the enhanced simplified E-model as proposed in this study can provide improvement beyond the original simplified one significantly.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

With the rapid development of facial forgery techniques, forgery detection has attracted more and more attention due to security concerns. Existing approaches attempt to use frequency information to mine subtle artifacts under high-quality forged faces. However, the exploitation of frequency information is coarse-grained, and more importantly, their vanilla learning process struggles to extract fine-grained forgery traces. To address this issue, we propose a progressive enhancement learning framework to exploit both the RGB and fine-grained frequency clues. Specifically, we perform a fine-grained decomposition of RGB images to completely decouple the real and fake traces in the frequency space. Subsequently, we propose a progressive enhancement learning framework based on a two-branch network, combined with self-enhancement and mutual-enhancement modules. The self-enhancement module captures the traces in different input spaces based on spatial noise enhancement and channel attention. The Mutual-enhancement module concurrently enhances RGB and frequency features by communicating in the shared spatial dimension. The progressive enhancement process facilitates the learning of discriminative features with fine-grained face forgery clues. Extensive experiments on several datasets show that our method outperforms the state-of-the-art face forgery detection methods.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

北京阿比特科技有限公司