亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Community detection in multi-layer networks is a crucial problem in network analysis. In this paper, we analyze the performance of two spectral clustering algorithms for community detection within the multi-layer degree-corrected stochastic block model (MLDCSBM) framework. One algorithm is based on the sum of adjacency matrices, while the other utilizes the debiased sum of squared adjacency matrices. We establish consistency results for community detection using these methods under MLDCSBM as the size of the network and/or the number of layers increases. Our theorems demonstrate the advantages of utilizing multiple layers for community detection. Moreover, our analysis indicates that spectral clustering with the debiased sum of squared adjacency matrices is generally superior to spectral clustering with the sum of adjacency matrices. Numerical simulations confirm that our algorithm, employing the debiased sum of squared adjacency matrices, surpasses existing methods for community detection in multi-layer networks. Finally, the analysis of several real-world multi-layer networks yields meaningful insights.

相關內容

在網絡中發現社區(稱為社區檢測/發現)是網絡科學中的一個基本問題,在過去的幾十年中引起了很多關注。 近年來,隨著對大數據的大量研究,另一個相關但又不同的問題(稱為社區搜索)旨在尋找包含查詢節點的最有可能的社區,這已引起了學術界和工業界的廣泛關注,它是社區檢測問題的依賴查詢的變體。

In this paper, to address the optimization problem on a compact matrix manifold, we introduce a novel algorithmic framework called the Transformed Gradient Projection (TGP) algorithm, using the projection onto this compact matrix manifold. Compared with the existing algorithms, the key innovation in our approach lies in the utilization of a new class of search directions and various stepsizes, including the Armijo, nonmonotone Armijo, and fixed stepsizes, to guide the selection of the next iterate. Our framework offers flexibility by encompassing the classical gradient projection algorithms as special cases, and intersecting the retraction-based line-search algorithms. Notably, our focus is on the Stiefel or Grassmann manifold, revealing that many existing algorithms in the literature can be seen as specific instances within our proposed framework, and this algorithmic framework also induces several new special cases. Then, we conduct a thorough exploration of the convergence properties of these algorithms, considering various search directions and stepsizes. To achieve this, we extensively analyze the geometric properties of the projection onto compact matrix manifolds, allowing us to extend classical inequalities related to retractions from the literature. Building upon these insights, we establish the weak convergence, convergence rate, and global convergence of TGP algorithms under three distinct stepsizes. In cases where the compact matrix manifold is the Stiefel or Grassmann manifold, our convergence results either encompass or surpass those found in the literature. Finally, through a series of numerical experiments, we observe that the TGP algorithms, owing to their increased flexibility in choosing search directions, outperform classical gradient projection and retraction-based line-search algorithms in several scenarios.

In backbone networks, it is fundamental to quickly protect traffic against any unexpected event, such as failures or congestions, which may impact Quality of Service (QoS). Standard solutions based on Segment Routing (SR), such as Topology-Independent Loop-Free Alternate (TI-LFA), are used in practice to handle failures, but no distributed solutions exist for distributed and tactical congestion mitigation. A promising approach leveraging SR has been recently proposed to quickly steer traffic away from congested links over alternative paths. As the pre-computation of alternative paths plays a paramount role to efficiently mitigating congestions, we investigate the associated path computation problem aiming at maximizing the amount of traffic that can be rerouted as well as the resilience against any 1-link failure. In particular, we focus on two variants of this problem. First, we maximize the residual flow after all possible failures. We show that the problem is NP-Hard, and we solve it via a Benders decomposition algorithm. Then, to provide a practical and scalable solution, we solve a relaxed variant problem, that maximizes, instead of flow, the number of surviving alternative paths after all possible failures. We provide a polynomial algorithm. Through numerical experiments, we compare the two variants and show that they allow to increase the amount of rerouted traffic and the resiliency of the network after any 1-link failure.

Recent papers initiated the study of a generalization of group testing where the potentially contaminated sets are the members of a given hypergraph F=(V,E). This generalization finds application in contexts where contaminations can be conditioned by some kinds of social and geographical clusterings. The paper focuses on few-stage group testing algorithms, i.e., slightly adaptive algorithms where tests are performed in stages and all tests performed in the same stage should be decided at the very beginning of the stage. In particular, the paper presents the first two-stage algorithm that uses o(dlog|E|) tests for general hypergraphs with hyperedges of size at most d, and a three-stage algorithm that improves by a d^{1/6} factor on the number of tests of the best known three-stage algorithm. These algorithms are special cases of an s-stage algorithm designed for an arbitrary positive integer s<= d. The design of this algorithm resort to a new non-adaptive algorithm (one-stage algorithm), i.e., an algorithm where all tests must be decided beforehand. Further, we derive a lower bound for non-adaptive group testing. For E sufficiently large, the lower bound is very close to the upper bound on the number of tests of the best non-adaptive group testing algorithm known in the literature, and it is the first lower bound that improves on the information theoretic lower bound Omega(log |E|).

Physics-informed neural networks (PINN) is a extremely powerful paradigm used to solve equations encountered in scientific computing applications. An important part of the procedure is the minimization of the equation residual which includes, when the equation is time-dependent, a time sampling. It was argued in the literature that the sampling need not be uniform but should overweight initial time instants, but no rigorous explanation was provided for these choice. In this paper we take some prototypical examples and, under standard hypothesis concerning the neural network convergence, we show that the optimal time sampling follows a truncated exponential distribution. In particular we explain when the time sampling is best to be uniform and when it should not be. The findings are illustrated with numerical examples on linear equation, Burgers' equation and the Lorenz system.

This paper introduces an innovative approach to the design of efficient decoders that meet the rigorous requirements of modern communication systems, particularly in terms of ultra-reliability and low-latency. We enhance an established hybrid decoding framework by proposing an ordered statistical decoding scheme augmented with a sliding window technique. This novel component replaces a key element of the current architecture, significantly reducing average complexity. A critical aspect of our scheme is the integration of a pre-trained neural network model that dynamically determines the progression or halt of the sliding window process. Furthermore, we present a user-defined soft margin mechanism that adeptly balances the trade-off between decoding accuracy and complexity. Empirical results, supported by a thorough complexity analysis, demonstrate that the proposed scheme holds a competitive advantage over existing state-of-the-art decoders, notably in addressing the decoding failures prevalent in neural min-sum decoders. Additionally, our research uncovers that short LDPC codes can deliver performance comparable to that of short classical linear codes within the critical waterfall region of the SNR, highlighting their potential for practical applications.

We present a novel, simple and widely applicable semi-supervised procedure for anomaly detection in industrial and IoT environments, SAnD (Simple Anomaly Detection). SAnD comprises 5 steps, each leveraging well-known statistical tools, namely; smoothing filters, variance inflation factors, the Mahalanobis distance, threshold selection algorithms and feature importance techniques. To our knowledge, SAnD is the first procedure that integrates these tools to identify anomalies and help decipher their putative causes. We show how each step contributes to tackling technical challenges that practitioners face when detecting anomalies in industrial contexts, where signals can be highly multicollinear, have unknown distributions, and intertwine short-lived noise with the long(er)-lived actual anomalies. The development of SAnD was motivated by a concrete case study from our industrial partner, which we use here to show its effectiveness. We also evaluate the performance of SAnD by comparing it with a selection of semi-supervised methods on public datasets from the literature on anomaly detection. We conclude that SAnD is effective, broadly applicable, and outperforms existing approaches in both anomaly detection and runtime.

This paper addresses the problem of deciding whether the dose response relationships between subgroups and the full population in a multi-regional trial are similar to each other. Similarity is measured in terms of the maximal deviation between the dose response curves. We consider a parametric framework and develop two powerful bootstrap tests for the similarity between the dose response curves of one subgroup and the full population, and for the similarity between the dose response curves of several subgroups and the full population. We prove the validity of the tests, investigate the finite sample properties by means of a simulation study and finally illustrate the methodology in a case study.

We argue that the success of reservoir computing lies within the separation capacity of the reservoirs and show that the expected separation capacity of random linear reservoirs is fully characterised by the spectral decomposition of an associated generalised matrix of moments. Of particular interest are reservoirs with Gaussian matrices that are either symmetric or whose entries are all independent. In the symmetric case, we prove that the separation capacity always deteriorates with time; while for short inputs, separation with large reservoirs is best achieved when the entries of the matrix are scaled with a factor $\rho_T/\sqrt{N}$, where $N$ is the dimension of the reservoir and $\rho_T$ depends on the maximum length of the input time series. In the i.i.d. case, we establish that optimal separation with large reservoirs is consistently achieved when the entries of the reservoir matrix are scaled with the exact factor $1/\sqrt{N}$. We further give upper bounds on the quality of separation in function of the length of the time series. We complement this analysis with an investigation of the likelihood of this separation and the impact of the chosen architecture on separation consistency.

In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司