Traffic prediction is a crucial topic because of its broad scope of applications in the transportation domain. Recently, various studies have achieved promising results. However, most studies assume the prediction locations have complete or at least partial historical records and cannot be extended to non-historical recorded locations. In real-life scenarios, the deployment of sensors could be limited due to budget limitations and installation availability, which makes most current models not applicable. Though few pieces of literature tried to impute traffic states at the missing locations, these methods need the data simultaneously observed at the locations with sensors, making them not applicable to prediction tasks. Another drawback is the lack of measurement of uncertainty in prediction, making prior works unsuitable for risk-sensitive tasks or involving decision-making. To fill the gap, inspired by the previous inductive graph neural network, this work proposed an uncertainty-aware framework with the ability to 1) extend prediction to missing locations with no historical records and significantly extend spatial coverage of prediction locations while reducing deployment of sensors and 2) generate probabilistic prediction with uncertainty quantification to help the management of risk and decision making in the down-stream tasks. Through extensive experiments on real-life datasets, the result shows our method achieved promising results on prediction tasks, and the uncertainty quantification gives consistent results which highly correlated with the locations with and without historical data. We also show that our model could help support sensor deployment tasks in the transportation field to achieve higher accuracy with a limited sensor deployment budget.
Gaussian processes are used in many machine learning applications that rely on uncertainty quantification. Recently, computational tools for working with these models in geometric settings, such as when inputs lie on a Riemannian manifold, have been developed. This raises the question: can these intrinsic models be shown theoretically to lead to better performance, compared to simply embedding all relevant quantities into $\mathbb{R}^d$ and using the restriction of an ordinary Euclidean Gaussian process? To study this, we prove optimal contraction rates for intrinsic Mat\'ern Gaussian processes defined on compact Riemannian manifolds. We also prove analogous rates for extrinsic processes using trace and extension theorems between manifold and ambient Sobolev spaces: somewhat surprisingly, the rates obtained turn out to coincide with those of the intrinsic processes, provided that their smoothness parameters are matched appropriately. We illustrate these rates empirically on a number of examples, which, mirroring prior work, show that intrinsic processes can achieve better performance in practice. Therefore, our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency of geometric Gaussian processes, particularly in settings which involve small data set sizes and non-asymptotic behavior.
Recently, multimodal recommendations have gained increasing attention for effectively addressing the data sparsity problem by incorporating modality-based representations. Although multimodal recommendations excel in accuracy, the introduction of different modalities (e.g., images, text, and audio) may expose more users' sensitive information (e.g., gender and age) to recommender systems, resulting in potentially more serious unfairness issues. Despite many efforts on fairness, existing fairness-aware methods are either incompatible with multimodal scenarios, or lead to suboptimal fairness performance due to neglecting sensitive information of multimodal content. To achieve counterfactual fairness in multimodal recommendations, we propose a novel fairness-aware multimodal recommendation approach (dubbed as FMMRec) to disentangle the sensitive and non-sensitive information from modal representations and leverage the disentangled modal representations to guide fairer representation learning. Specifically, we first disentangle biased and filtered modal representations by maximizing and minimizing their sensitive attribute prediction ability respectively. With the disentangled modal representations, we mine the modality-based unfair and fair (corresponding to biased and filtered) user-user structures for enhancing explicit user representation with the biased and filtered neighbors from the corresponding structures, followed by adversarially filtering out sensitive information. Experiments on two real-world public datasets demonstrate the superiority of our FMMRec relative to the state-of-the-art baselines. Our source code is available at //anonymous.4open.science/r/FMMRec.
Graph generative model evaluation necessitates understanding differences between graphs on the distributional level. This entails being able to harness salient attributes of graphs in an efficient manner. Curvature constitutes one such property that has recently proved its utility in characterising graphs. Its expressive properties, stability, and practical utility in model evaluation remain largely unexplored, however. We combine graph curvature descriptors with emerging methods from topological data analysis to obtain robust, expressive descriptors for evaluating graph generative models.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.
Message passing Graph Neural Networks (GNNs) provide a powerful modeling framework for relational data. However, the expressive power of existing GNNs is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test, which means GNNs that are not able to predict node clustering coefficients and shortest path distances, and cannot differentiate between different d-regular graphs. Here we develop a class of message passing GNNs, named Identity-aware Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL test. ID-GNN offers a minimal but powerful solution to limitations of existing GNNs. ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing. To embed a given node, ID-GNN first extracts the ego network centered at the node, then conducts rounds of heterogeneous message passing, where different sets of parameters are applied to the center node than to other surrounding nodes in the ego network. We further propose a simplified but faster version of ID-GNN that injects node identity information as augmented node features. Altogether, both versions of ID-GNN represent general extensions of message passing GNNs, where experiments show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks; 3% accuracy improvement on node and graph classification benchmarks; and 15% ROC AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs demonstrate improved or comparable performance over other task-specific graph networks.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.
Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.