亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Learning (FL) has emerged as a transformative approach in healthcare, enabling collaborative model training across decentralized data sources while preserving user privacy. However, performance of FL rapidly degrades in practical scenarios due to the inherent bias in non Independent and Identically distributed (non-IID) data among participating clients, which poses significant challenges to model accuracy and generalization. Therefore, we propose the Bias-Aware Client Selection Algorithm (BACSA), which detects user bias and strategically selects clients based on their bias profiles. In addition, the proposed algorithm considers privacy preservation, fairness and constraints of wireless network environments, making it suitable for sensitive healthcare applications where Quality of Service (QoS), privacy and security are paramount. Our approach begins with a novel method for detecting user bias by analyzing model parameters and correlating them with the distribution of class-specific data samples. We then formulate a mixed-integer non-linear client selection problem leveraging the detected bias, alongside wireless network constraints, to optimize FL performance. We demonstrate that BACSA improves convergence and accuracy, compared to existing benchmarks, through evaluations on various data distributions, including Dirichlet and class-constrained scenarios. Additionally, we explore the trade-offs between accuracy, fairness, and network constraints, indicating the adaptability and robustness of BACSA to address diverse healthcare applications.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡(luo)會議。 Publisher:IFIP。 SIT:

Neuro-symbolic Artificial Intelligence (AI) models, blending neural networks with symbolic AI, have facilitated transparent reasoning and context understanding without the need for explicit rule-based programming. However, implementing such models in the Internet of Things (IoT) sensor nodes presents hurdles due to computational constraints and intricacies. In this work, for the first time, we propose a near-sensor neuro-symbolic AI computing accelerator named Neuro-Photonix for vision applications. Neuro-photonix processes neural dynamic computations on analog data while inherently supporting granularity-controllable convolution operations through the efficient use of photonic devices. Additionally, the creation of an innovative, low-cost ADC that works seamlessly with photonic technology removes the necessity for costly ADCs. Moreover, Neuro-Photonix facilitates the generation of HyperDimensional (HD) vectors for HD-based symbolic AI computing. This approach allows the proposed design to substantially diminish the energy consumption and latency of conversion, transmission, and processing within the established cloud-centric architecture and recently designed accelerators. Our device-to-architecture results show that Neuro-Photonix achieves 30 GOPS/W and reduces power consumption by a factor of 20.8 and 4.1 on average on neural dynamics compared to ASIC baselines and photonic accelerators while preserving accuracy.

Structural health monitoring (SHM) is essential for the early detection of infrastructure defects, such as cracks in concrete bridge pier. but often faces challenges in efficiency and accuracy in complex environments. Although the Segment Anything Model (SAM) achieves excellent segmentation performance, its computational demands limit its suitability for real-time applications on edge devices. To address these challenges, this paper proposes Crack-EdgeSAM, a self-prompting crack segmentation system that integrates YOLOv8 for generating prompt boxes and a fine-tuned EdgeSAM model for crack segmentation. To ensure computational efficiency, the method employs ConvLoRA, a Parameter-Efficient Fine-Tuning (PEFT) technique, along with DiceFocalLoss to fine-tune the EdgeSAM model. Our experimental results on public datasets and the climbing robot automatic inspections demonstrate that the system achieves high segmentation accuracy and significantly enhanced inference speed compared to the most recent methods. Notably, the system processes 1024 x 1024 pixels images at 46 FPS on our PC and 8 FPS on Jetson Orin Nano.

The rapid advancement of ML models in critical sectors such as healthcare, finance, and security has intensified the need for robust data security, model integrity, and reliable outputs. Large multimodal foundational models, while crucial for complex tasks, present challenges in scalability, reliability, and potential misuse. Decentralized systems offer a solution by distributing workload and mitigating central points of failure, but they introduce risks of unauthorized access to sensitive data across nodes. We address these challenges with a comprehensive framework designed for responsible AI development. Our approach incorporates: 1) Zero-knowledge proofs for secure model verification, enhancing trust without compromising privacy. 2) Consensus-based verification checks to ensure consistent outputs across nodes, mitigating hallucinations and maintaining model integrity. 3) Split Learning techniques that segment models across different nodes, preserving data privacy by preventing full data access at any point. 4) Hardware-based security through trusted execution environments (TEEs) to protect data and computations. This framework aims to enhance security and privacy and improve the reliability and fairness of multimodal AI systems. Promoting efficient resource utilization contributes to more sustainable AI development. Our state-of-the-art proofs and principles demonstrate the framework's effectiveness in responsibly democratizing artificial intelligence, offering a promising approach for building secure and private foundational models.

Deep reinforcement learning (DRL) has revolutionised quadruped robot locomotion, but existing control frameworks struggle to generalise beyond their training-induced observational scope, resulting in limited adaptability. In contrast, animals achieve exceptional adaptability through gait transition strategies, diverse gait utilisation, and seamless adjustment to immediate environmental demands. Inspired by these capabilities, we present a novel DRL framework that incorporates key attributes of animal locomotion: gait transition strategies, pseudo gait procedural memory, and adaptive motion adjustments. This approach enables our framework to achieve unparalleled adaptability, demonstrated through blind zero-shot deployment on complex terrains and recovery from critically unstable states. Our findings offer valuable insights into the biomechanics of animal locomotion, paving the way for robust, adaptable robotic systems.

Federated Learning (FL) has emerged as a promising approach for privacy-preserving model training across decentralized devices. However, it faces challenges such as statistical heterogeneity and susceptibility to adversarial attacks, which can impact model robustness and fairness. Personalized FL attempts to provide some relief by customizing models for individual clients. However, it falls short in addressing server-side aggregation vulnerabilities. We introduce a novel method called \textbf{FedAA}, which optimizes client contributions via \textbf{A}daptive \textbf{A}ggregation to enhance model robustness against malicious clients and ensure fairness across participants in non-identically distributed settings. To achieve this goal, we propose an approach involving a Deep Deterministic Policy Gradient-based algorithm for continuous control of aggregation weights, an innovative client selection method based on model parameter distances, and a reward mechanism guided by validation set performance. Empirically, extensive experiments demonstrate that, in terms of robustness, \textbf{FedAA} outperforms the state-of-the-art methods, while maintaining comparable levels of fairness, offering a promising solution to build resilient and fair federated systems. Our code is available at //github.com/Gp1g/FedAA.

Programming has become an essential component of K-12 education and serves as a pathway for developing computational thinking skills. Given the complexity of programming and the advanced skills it requires, previous research has introduced user-friendly tools to support young learners. However, our interviews with six programming educators revealed that current tools often fail to reflect classroom learning objectives, offer flexible, high-quality guidance, and foster student creativity. This highlights the need for more adaptive and reflective tools. Therefore, we introduced MindScratch, a multimodal generative AI (GAI) powered visual programming support tool. MindScratch aims to balance structured classroom activities with free programming creation, supporting students in completing creative programming projects based on teacher-set learning objectives while also providing programming scaffolding. Our user study results indicate that, compared to the baseline, MindScratch more effectively helps students achieve high-quality projects aligned with learning objectives. It also enhances students' computational thinking skills and creative thinking. Overall, we believe that GAI-driven educational tools like MindScratch offer students a focused and engaging learning experience.

Recently, LoRA has emerged as a crucial technique for fine-tuning large pre-trained models, yet its performance in multi-task learning scenarios often falls short. In contrast, the MoE architecture presents a natural solution to this issue. However, it introduces challenges such as mutual interference of data across multiple domains and knowledge forgetting of various tasks. Additionally, MoE significantly increases the number of parameters, posing a computational cost challenge. Therefore, in this paper, we propose MoSLD, a mixture-of-shared-LoRAs model with a dropout strategy. MoSLD addresses these challenges by sharing the upper projection matrix in LoRA among different experts, encouraging the model to learn general knowledge across tasks, while still allowing the lower projection matrix to focus on the unique features of each task. The application of dropout alleviates the imbalanced update of parameter matrix and mitigates parameter overfitting in LoRA. Extensive experiments demonstrate that our model exhibits excellent performance in both single-task and multi-task scenarios, with robust out-of-domain generalization capabilities.

Despite the efficiency of prompt learning in transferring vision-language models (VLMs) to downstream tasks, existing methods mainly learn the prompts in a coarse-grained manner where the learned prompt vectors are shared across all categories. Consequently, the tailored prompts often fail to discern class-specific visual concepts, thereby hindering the transferred performance for classes that share similar or complex visual attributes. Recent advances mitigate this challenge by leveraging external knowledge from Large Language Models (LLMs) to furnish class descriptions, yet incurring notable inference costs. In this paper, we introduce TextRefiner, a plug-and-play method to refine the text prompts of existing methods by leveraging the internal knowledge of VLMs. Particularly, TextRefiner builds a novel local cache module to encapsulate fine-grained visual concepts derivedfrom local tokens within the image branch. By aggregating and aligning the cached visual descriptions with the original output of the text branch, TextRefiner can efficiently refine and enrich the learned prompts from existing methods without relying on any external expertise. For example, it improves the performance of CoOp from 71.66 % to 76.94 % on 11 benchmarks, surpassing CoCoOp which introduces instance-wise features for text prompts. Equipped with TextRefiner, PromptKD achieves state-of-the-art performance and is efficient in inference. Our code is relesed at //github.com/xjjxmu/TextRefiner

eXplainable Artificial Intelligence (XAI) has garnered significant attention for enhancing transparency and trust in machine learning models. However, the scopes of most existing explanation techniques focus either on offering a holistic view of the explainee model (global explanation) or on individual instances (local explanation), while the middle ground, i.e., cohort-based explanation, is less explored. Cohort explanations offer insights into the explainee's behavior on a specific group or cohort of instances, enabling a deeper understanding of model decisions within a defined context. In this paper, we discuss the unique challenges and opportunities associated with measuring cohort explanations, define their desired properties, and create a generalized framework for generating cohort explanations based on supervised clustering.

Federated Learning (FL) has surged in prominence due to its capability of collaborative model training without direct data sharing. However, the vast disparity in local data distributions among clients, often termed the Non-Independent Identically Distributed (Non-IID) challenge, poses a significant hurdle to FL's generalization efficacy. The scenario becomes even more complex when not all clients participate in the training process, a common occurrence due to unstable network connections or limited computational capacities. This can greatly complicate the assessment of the trained models' generalization abilities. While a plethora of recent studies has centered on the generalization gap pertaining to unseen data from participating clients with diverse distributions, the distinction between the training distributions of participating clients and the testing distributions of non-participating ones has been largely overlooked. In response, our paper unveils an information-theoretic generalization framework for FL. Specifically, it quantifies generalization errors by evaluating the information entropy of local distributions and discerning discrepancies across these distributions. Inspired by our deduced generalization bounds, we introduce a weighted aggregation approach and a duo of client selection strategies. These innovations are designed to strengthen FL's ability to generalize and thus ensure that trained models perform better on non-participating clients by incorporating a more diverse range of client data distributions. Our extensive empirical evaluations reaffirm the potency of our proposed methods, aligning seamlessly with our theoretical construct.

北京阿比特科技有限公司