亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The paper introduces Diff-Filter, a multichannel speech enhancement approach based on the diffusion probabilistic model, for improving speaker verification performance under noisy and reverberant conditions. It also presents a new two-step training procedure that takes the benefit of self-supervised learning. In the first stage, the Diff-Filter is trained by conducting timedomain speech filtering using a scoring-based diffusion model. In the second stage, the Diff-Filter is jointly optimized with a pre-trained ECAPA-TDNN speaker verification model under a self-supervised learning framework. We present a novel loss based on equal error rate. This loss is used to conduct selfsupervised learning on a dataset that is not labelled in terms of speakers. The proposed approach is evaluated on MultiSV, a multichannel speaker verification dataset, and shows significant improvements in performance under noisy multichannel conditions.

相關內容

語(yu)音增強是指(zhi)當語(yu)音信(xin)號被各種(zhong)各樣的噪(zao)聲干擾、甚(shen)至淹(yan)沒后,從(cong)噪(zao)聲背(bei)景中提取(qu)有(you)用的語(yu)音信(xin)號,抑制、降低(di)噪(zao)聲干擾的技術。一句話(hua),從(cong)含噪(zao)語(yu)音中提取(qu)盡可能純凈的原始語(yu)音。

The class of doubly-robust (DR) functionals studied by Rotnitzky et al. (2021) is of central importance in economics and biostatistics. It strictly includes both (i) the class of mean-square continuous functionals that can be written as an expectation of an affine functional of a conditional expectation studied by Chernozhukov et al. (2022b) and (ii) the class of functionals studied by Robins et al. (2008). The present state-of-the-art estimators for DR functionals $\psi$ are double-machine-learning (DML) estimators (Chernozhukov et al., 2018). A DML estimator $\widehat{\psi}_{1}$ of $\psi$ depends on estimates $\widehat{p} (x)$ and $\widehat{b} (x)$ of a pair of nuisance functions $p(x)$ and $b(x)$, and is said to satisfy "rate double-robustness" if the Cauchy--Schwarz upper bound of its bias is $o (n^{- 1/2})$. Were it achievable, our scientific goal would have been to construct valid, assumption-lean (i.e. no complexity-reducing assumptions on $b$ or $p$) tests of the validity of a nominal $(1 - \alpha)$ Wald confidence interval (CI) centered at $\widehat{\psi}_{1}$. But this would require a test of the bias to be $o (n^{-1/2})$, which can be shown not to exist. We therefore adopt the less ambitious goal of falsifying, when possible, an analyst's justification for her claim that the reported $(1 - \alpha)$ Wald CI is valid. In many instances, an analyst justifies her claim by imposing complexity-reducing assumptions on $b$ and $p$ to ensure "rate double-robustness". Here we exhibit valid, assumption-lean tests of $H_{0}$: "rate double-robustness holds", with non-trivial power against certain alternatives. If $H_{0}$ is rejected, we will have falsified her justification. However, no assumption-lean test of $H_{0}$, including ours, can be a consistent test. Thus, the failure of our test to reject is not meaningful evidence in favor of $H_{0}$.

This paper formulates, analyzes, and demonstrates numerically a method for the partitioned solution of coupled interface problems involving combinations of projection-based reduced order models (ROM) and/or full order methods (FOMs). The method builds on the partitioned scheme developed in [1], which starts from a well-posed formulation of the coupled interface problem and uses its dual Schur complement to obtain an approximation of the interface flux. Explicit time integration of this problem decouples its subdomain equations and enables their independent solution on each subdomain. Extension of this partitioned scheme to coupled ROM-ROM or ROM-FOM problems required formulations with non-singular Schur complements. To obtain these problems, we project a well-posed coupled FOM-FOM problem onto a composite reduced basis comprising separate sets of basis vectors for the interface and interior variables, and use the interface reduced basis as a Lagrange multiplier. Our analysis confirms that the resulting coupled ROM-ROM and ROM-FOM problems have provably non-singular Schur complements, independent of the mesh size and the reduced basis size. In the ROM-FOM case, analysis shows that one can also use the interface FOM space as a Lagrange multiplier. We illustrate the theoretical and computational properties of the partitioned scheme through reproductive and predictive tests for a model advection-diffusion transmission problem.

This paper considers a Bayesian approach for inclusion detection in nonlinear inverse problems using two known and popular push-forward prior distributions: the star-shaped and level set prior distributions. We analyze the convergence of the corresponding posterior distributions in a small measurement noise limit. The methodology is general; it works for priors arising from any H\"older continuous transformation of Gaussian random fields and is applicable to a range of inverse problems. The level set and star-shaped prior distributions are examples of push-forward priors under H\"older continuous transformations that take advantage of the structure of inclusion detection problems. We show that the corresponding posterior mean converges to the ground truth in a proper probabilistic sense. Numerical tests on a two-dimensional quantitative photoacoustic tomography problem showcase the approach. The results highlight the convergence properties of the posterior distributions and the ability of the methodology to detect inclusions with sufficiently regular boundaries.

Evolutionary search-based techniques are commonly used for testing autonomous robotic systems. However, these approaches often rely on computationally expensive simulator-based models for test scenario evaluation. To improve the computational efficiency of the search-based testing, we propose augmenting the evolutionary search (ES) with a reinforcement learning (RL) agent trained using surrogate rewards derived from domain knowledge. In our approach, known as RIGAA (Reinforcement learning Informed Genetic Algorithm for Autonomous systems testing), we first train an RL agent to learn useful constraints of the problem and then use it to produce a certain part of the initial population of the search algorithm. By incorporating an RL agent into the search process, we aim to guide the algorithm towards promising regions of the search space from the start, enabling more efficient exploration of the solution space. We evaluate RIGAA on two case studies: maze generation for an autonomous ant robot and road topology generation for an autonomous vehicle lane keeping assist system. In both case studies, RIGAA converges faster to fitter solutions and produces a better test suite (in terms of average test scenario fitness and diversity). RIGAA also outperforms the state-of-the-art tools for vehicle lane keeping assist system testing, such as AmbieGen and Frenetic.

This paper addresses the benefits of pooling data for shared learning in maintenance operations. We consider a set of systems subject to Poisson degradation that are coupled through an a-priori unknown rate. Decision problems involving these systems are high-dimensional Markov decision processes (MDPs). We present a decomposition result that reduces such an MDP to two-dimensional MDPs, enabling structural analyses and computations. We leverage this decomposition to demonstrate that pooling data can lead to significant cost reductions compared to not pooling.

This paper studies distributed Nash equilibrium (NE) seeking under Denial-of-Service (DoS) attacks and quantization. The players can only exchange information with their own direct neighbors. The transmitted information is subject to quantization and packet losses induced by malicious DoS attacks. We propose a quantized distributed NE seeking strategy based on the approach of dynamic quantized consensus. To solve the quantizer saturation problem caused by DoS attacks, the quantization mechanism is equipped to have zooming-in and holding capabilities, in which the holding capability is consistent with the results in quantized consensus under DoS. A sufficient condition on the number of quantizer levels is provided, under which the quantizers are free from saturation under DoS attacks. The proposed distributed quantized NE seeking strategy is shown to have the so-called maximum resilience to DoS attacks. Namely, if the bound characterizing the maximum resilience is violated, an attacker can deny all the transmissions and hence distributed NE seeking is impossible.

The design of automatic speech pronunciation assessment can be categorized into closed and open response scenarios, each with strengths and limitations. A system with the ability to function in both scenarios can cater to diverse learning needs and provide a more precise and holistic assessment of pronunciation skills. In this study, we propose a Multi-task Pronunciation Assessment model called MultiPA. MultiPA provides an alternative to Kaldi-based systems in that it has simpler format requirements and better compatibility with other neural network models. Compared with previous open response systems, MultiPA provides a wider range of evaluations, encompassing assessments at both the sentence and word-level. Our experimental results show that MultiPA achieves comparable performance when working in closed response scenarios and maintains more robust performance when directly used for open responses.

Accurately estimating parameters in complex nonlinear systems is crucial across scientific and engineering fields. We present a novel approach for parameter estimation using a neural network with the Huber loss function. This method taps into deep learning's abilities to uncover parameters governing intricate behaviors in nonlinear equations. We validate our approach using synthetic data and predefined functions that model system dynamics. By training the neural network with noisy time series data, it fine-tunes the Huber loss function to converge to accurate parameters. We apply our method to damped oscillators, Van der Pol oscillators, Lotka-Volterra systems, and Lorenz systems under multiplicative noise. The trained neural network accurately estimates parameters, evident from closely matching latent dynamics. Comparing true and estimated trajectories visually reinforces our method's precision and robustness. Our study underscores the Huber loss-guided neural network as a versatile tool for parameter estimation, effectively uncovering complex relationships in nonlinear systems. The method navigates noise and uncertainty adeptly, showcasing its adaptability to real-world challenges.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司