亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Discovering a suitable neural network architecture for modeling complex dynamical systems poses a formidable challenge, often involving extensive trial and error and navigation through a high-dimensional hyper-parameter space. In this paper, we discuss a systematic approach to constructing neural architectures for modeling a subclass of dynamical systems, namely, Linear Time-Invariant (LTI) systems. We use a variant of continuous-time neural networks in which the output of each neuron evolves continuously as a solution of a first-order or second-order Ordinary Differential Equation (ODE). Instead of deriving the network architecture and parameters from data, we propose a gradient-free algorithm to compute sparse architecture and network parameters directly from the given LTI system, leveraging its properties. We bring forth a novel neural architecture paradigm featuring horizontal hidden layers and provide insights into why employing conventional neural architectures with vertical hidden layers may not be favorable. We also provide an upper bound on the numerical errors of our neural networks. Finally, we demonstrate the high accuracy of our constructed networks on three numerical examples.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We report on the development of an implementable physics-data hybrid dynamic model for an articulated manipulator to plan and operate in various scenarios. Meanwhile, the physics-based and data-driven dynamic models are studied in this research to select the best model for planning. The physics-based model is constructed using the Lagrangian method, and the loss terms include inertia loss, viscous loss, and friction loss. As for the data-driven model, three methods are explored, including DNN, LSTM, and XGBoost. Our modeling results demonstrate that, after comprehensive hyperparameter optimization, the XGBoost architecture outperforms DNN and LSTM in accurately representing manipulator dynamics. The hybrid model with physics-based and data-driven terms has the best performance among all models based on the RMSE criteria, and it only needs about 24k of training data. In addition, we developed a virtual force sensor of a manipulator using the observed external torque derived from the dynamic model and designed a motion planner through the physics-data hybrid dynamic model. The external torque contributes to forces and torque on the end effector, facilitating interaction with the surroundings, while the internal torque governs manipulator motion dynamics and compensates for internal losses. By estimating external torque via the difference between measured joint torque and internal losses, we implement a sensorless control strategy which is demonstrated through a peg-in-hole task. Lastly, a learning-based motion planner based on the hybrid dynamic model assists in planning time-efficient trajectories for the manipulator. This comprehensive approach underscores the efficacy of integrating physics-based and data-driven models for advanced manipulator control and planning in industrial environments.

This paper presents a regularized recursive identification algorithm with simultaneous on-line estimation of both the model parameters and the algorithms hyperparameters. A new kernel is proposed to facilitate the algorithm development. The performance of this novel scheme is compared with that of the recursive least squares algorithm in simulation.

We propose a continuous approach for computing the pseudospectra of linear operators following a 'solve-then-discretize' strategy. Instead of taking a finite section approach or using a finite-dimensional matrix to approximate the operator of interest, the new method employs an operator analogue of the Lanczos process to work directly with operators and functions. The method is shown to be free of spectral pollution and spectral invisibility, fully adaptive, nearly optimal in accuracy, and well-conditioned. The advantages of the method are demonstrated by extensive numerical examples and comparison with the traditional method.

The lacking of analytic solutions of diverse partial differential equations (PDEs) gives birth to a series of computational techniques for numerical solutions. Although numerous latest advances are accomplished in developing neural operators, a kind of neural-network-based PDE solver, these solvers become less accurate and explainable while learning long-term behaviors of non-linear PDE families. In this paper, we propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges. With the same objective of learning an infinite-dimensional mapping between Banach spaces that serves as the solution operator of the target PDE family, our approach differs from existing models by formulating a non-linear dynamic system of equation solution. By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, to act on the flow mapping of the dynamic system, we can equivalently learn the solution of a non-linear PDE family by solving simple linear prediction problems. We validate the KNO in mesh-independent, long-term, and5zero-shot predictions on five representative PDEs (e.g., the Navier-Stokes equation and the Rayleigh-B{\'e}nard convection) and three real dynamic systems (e.g., global water vapor patterns and western boundary currents). In these experiments, the KNO exhibits notable advantages compared with previous state-of-the-art models, suggesting the potential of the KNO in supporting diverse science and engineering applications (e.g., PDE solving, turbulence modelling, and precipitation forecasting).

Mathematical models of protein-protein dynamics, such as the heterodimer model, play a crucial role in understanding many physical phenomena. This model is a system of two semilinear parabolic partial differential equations describing the evolution and mutual interaction of biological species. An example is the neurodegenerative disease progression in some significant pathologies, such as Alzheimer's and Parkinson's diseases, characterized by the accumulation and propagation of toxic prionic proteins. This article presents and analyzes a flexible high-order discretization method for the numerical approximation of the heterodimer model. We propose a space discretization based on a Discontinuous Galerkin method on polygonal/polyhedral grids, which provides flexibility in handling complex geometries. Concerning the semi-discrete formulation, we prove stability and a-priori error estimates for the first time. Next, we adopt a $\theta$-method scheme as a time integration scheme. Convergence tests are carried out to demonstrate the theoretical bounds and the ability of the method to approximate traveling wave solutions, considering also complex geometries such as brain sections reconstructed from medical images. Finally, the proposed scheme is tested in a practical test case stemming from neuroscience applications, namely the simulation of the spread of $\alpha$-synuclein in a realistic test case of Parkinson's disease in a two-dimensional sagittal brain section geometry reconstructed from medical images.

When multitudes of features can plausibly be associated with a response, both privacy considerations and model parsimony suggest grouping them to increase the predictive power of a regression model. Specifically, the identification of groups of predictors significantly associated with the response variable eases further downstream analysis and decision-making. This paper proposes a new data analysis methodology that utilizes the high-dimensional predictor space to construct an implicit network with weighted edges %and weights on the edges to identify significant associations between the response and the predictors. Using a population model for groups of predictors defined via network-wide metrics, a new supervised grouping algorithm is proposed to determine the correct group, with probability tending to one as the sample size diverges to infinity. For this reason, we establish several theoretical properties of the estimates of network-wide metrics. A novel model-assisted bootstrap procedure that substantially decreases computational complexity is developed, facilitating the assessment of uncertainty in the estimates of network-wide metrics. The proposed methods account for several challenges that arise in the high-dimensional data setting, including (i) a large number of predictors, (ii) uncertainty regarding the true statistical model, and (iii) model selection variability. The performance of the proposed methods is demonstrated through numerical experiments, data from sports analytics, and breast cancer data.

We consider the computation of statistical moments to operator equations with stochastic data. We remark that application of PINNs -- referred to as TPINNs -- allows to solve the induced tensor operator equations under minimal changes of existing PINNs code, and enabling handling of non-linear and time-dependent operators. We propose two types of architectures, referred to as vanilla and multi-output TPINNs, and investigate their benefits and limitations. Exhaustive numerical experiments are performed; demonstrating applicability and performance; raising a variety of new promising research avenues.

Neural network (NN) designed for challenging machine learning tasks is in general a highly nonlinear mapping that contains massive variational parameters. High complexity of NN, if unbounded or unconstrained, might unpredictably cause severe issues including over-fitting, loss of generalization power, and unbearable cost of hardware. In this work, we propose a general compression scheme that significantly reduces the variational parameters of NN by encoding them to deep automatically-differentiable tensor network (ADTN) that contains exponentially-fewer free parameters. Superior compression performance of our scheme is demonstrated on several widely-recognized NN's (FC-2, LeNet-5, AlextNet, ZFNet and VGG-16) and datasets (MNIST, CIFAR-10 and CIFAR-100). For instance, we compress two linear layers in VGG-16 with approximately $10^{7}$ parameters to two ADTN's with just 424 parameters, where the testing accuracy on CIFAR-10 is improved from $90.17 \%$ to $91.74\%$. Our work suggests TN as an exceptionally efficient mathematical structure for representing the variational parameters of NN's, which exhibits superior compressibility over the commonly-used matrices and multi-way arrays.

A change point detection (CPD) framework assisted by a predictive machine learning model called "Predict and Compare" is introduced and characterised in relation to other state-of-the-art online CPD routines which it outperforms in terms of false positive rate and out-of-control average run length. The method's focus is on improving standard methods from sequential analysis such as the CUSUM rule in terms of these quality measures. This is achieved by replacing typically used trend estimation functionals such as the running mean with more sophisticated predictive models (Predict step), and comparing their prognosis with actual data (Compare step). The two models used in the Predict step are the ARIMA model and the LSTM recursive neural network. However, the framework is formulated in general terms, so as to allow the use of other prediction or comparison methods than those tested here. The power of the method is demonstrated in a tribological case study in which change points separating the run-in, steady-state, and divergent wear phases are detected in the regime of very few false positives.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司