亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of secure distributed matrix multiplication (SDMM), where a user has two matrices and wishes to compute their product with the help of $N$ honest but curious servers under the security constraint that any information about either $A$ or $B$ is not leaked to any server. This paper presents a \emph{new scheme} that considers the inner product partition for matrices $A$ and $B$. Our central technique relies on encoding matrices $A$ and $B$ in a Hermitian code and its dual code, respectively. We present the Hermitian Algebraic (HerA) scheme, which employs Hermitian codes and characterizes the partitioning and security capacities given entries of matrices belonging to a finite field with $q^2$ elements. We showcase that this scheme performs the secure distributed matrix multiplication in a significantly smaller finite field and expands security allowances compared to the existing results in the literature.

相關內容

Analytical methods are fundamental in studying acoustics problems. One of the important tools is the Wiener-Hopf method, which can be used to solve many canonical problems with sharp transitions in boundary conditions on a plane/plate. However, there are some strict limitations to its use, usually the boundary conditions need to be imposed on parallel lines (after a suitable mapping). Such mappings exist for wedges with continuous boundaries, but for discrete boundaries, they have not yet been constructed. In our previous article, we have overcome this limitation and studied the diffraction of acoustic waves by a wedge consisting of point scatterers. Here, the problem is generalised to an arbitrary number of periodic semi-infinite arrays with arbitrary orientations. This is done by constructing several coupled systems of equations (one for every semi-infinite array) which are treated independently. The derived systems of equations are solved using the discrete Wiener-Hopf technique and the resulting matrix equation is inverted using elementary matrix arithmetic. Of course, numerically this matrix needs to be truncated, but we are able to do so such that thousands of scatterers on every array are included in the numerical results. Comparisons with other numerical methods are considered, and their strengths/weaknesses are highlighted.

Quantifying treatment effect heterogeneity is a crucial task in many areas of causal inference, e.g. optimal treatment allocation and estimation of subgroup effects. We study the problem of estimating the level sets of the conditional average treatment effect (CATE), identified under the no-unmeasured-confounders assumption. Given a user-specified threshold, the goal is to estimate the set of all units for whom the treatment effect exceeds that threshold. For example, if the cutoff is zero, the estimand is the set of all units who would benefit from receiving treatment. Assigning treatment just to this set represents the optimal treatment rule that maximises the mean population outcome. Similarly, cutoffs greater than zero represent optimal rules under resource constraints. The level set estimator that we study follows the plug-in principle and consists of simply thresholding a good estimator of the CATE. While many CATE estimators have been recently proposed and analysed, how their properties relate to those of the corresponding level set estimators remains unclear. Our first goal is thus to fill this gap by deriving the asymptotic properties of level set estimators depending on which estimator of the CATE is used. Next, we identify a minimax optimal estimator in a model where the CATE, the propensity score and the outcome model are Holder-smooth of varying orders. We consider data generating processes that satisfy a margin condition governing the probability of observing units for whom the CATE is close to the threshold. We investigate the performance of the estimators in simulations and illustrate our methods on a dataset used to study the effects on mortality of laparoscopic vs open surgery in the treatment of various conditions of the colon.

Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning fields. The validity of existing works heavily rely on either a restrictive Lower-Level Strong Convexity (LLSC) condition or on solving a series of approximation subproblems with high accuracy or both. In this work, by averaging the upper and lower level objectives, we propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for BLO that is simple yet efficient for large-scale BLO and gets rid of the limited LLSC restriction. We further provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption, which is always required by others. Thus our theory safely captures a wider variety of applications in deep learning, especially where the upper-level objective is quadratic w.r.t. the lower-level variable. Experimental results demonstrate the superiority of our method.

The storage, management, and application of massive spatio-temporal data are widely applied in various practical scenarios, including public safety. However, due to the unique spatio-temporal distribution characteristics of re-al-world data, most existing methods have limitations in terms of the spatio-temporal proximity of data and load balancing in distributed storage. There-fore, this paper proposes an efficient partitioning method of large-scale public safety spatio-temporal data based on information loss constraints (IFL-LSTP). The IFL-LSTP model specifically targets large-scale spatio-temporal point da-ta by combining the spatio-temporal partitioning module (STPM) with the graph partitioning module (GPM). This approach can significantly reduce the scale of data while maintaining the model's accuracy, in order to improve the partitioning efficiency. It can also ensure the load balancing of distributed storage while maintaining spatio-temporal proximity of the data partitioning results. This method provides a new solution for distributed storage of mas-sive spatio-temporal data. The experimental results on multiple real-world da-tasets demonstrate the effectiveness and superiority of IFL-LSTP.

Statistical machine learning methods often face the challenge of limited data available from the population of interest. One remedy is to leverage data from auxiliary source populations, which share some conditional distributions or are linked in other ways with the target domain. Techniques leveraging such \emph{dataset shift} conditions are known as \emph{domain adaptation} or \emph{transfer learning}. Despite extensive literature on dataset shift, limited works address how to efficiently use the auxiliary populations to improve the accuracy of risk evaluation for a given machine learning task in the target population. In this paper, we study the general problem of efficiently estimating target population risk under various dataset shift conditions, leveraging semiparametric efficiency theory. We consider a general class of dataset shift conditions, which includes three popular conditions -- covariate, label and concept shift -- as special cases. We allow for partially non-overlapping support between the source and target populations. We develop efficient and multiply robust estimators along with a straightforward specification test of these dataset shift conditions. We also derive efficiency bounds for two other dataset shift conditions, posterior drift and location-scale shift. Simulation studies support the efficiency gains due to leveraging plausible dataset shift conditions.

The elastic net combines lasso and ridge regression to fuse the sparsity property of lasso with the grouping property of ridge regression. The connections between ridge regression and gradient descent and between lasso and forward stagewise regression have previously been shown. Similar to how the elastic net generalizes lasso and ridge regression, we introduce elastic gradient descent, a generalization of gradient descent and forward stagewise regression. We theoretically analyze elastic gradient descent and compare it to the elastic net and forward stagewise regression. Parts of the analysis are based on elastic gradient flow, a piecewise analytical construction, obtained for elastic gradient descent with infinitesimal step size. We also compare elastic gradient descent to the elastic net on real and simulated data and show that it provides similar solution paths, but is several orders of magnitude faster. Compared to forward stagewise regression, elastic gradient descent selects a model that, although still sparse, provides considerably lower prediction and estimation errors.

We consider the problem of approximating a $d \times d$ covariance matrix $M$ with a rank-$k$ matrix under $(\varepsilon,\delta)$-differential privacy. We present and analyze a complex variant of the Gaussian mechanism and show that the Frobenius norm of the difference between the matrix output by this mechanism and the best rank-$k$ approximation to $M$ is bounded by roughly $\tilde{O}(\sqrt{kd})$, whenever there is an appropriately large gap between the $k$'th and the $k+1$'th eigenvalues of $M$. This improves on previous work that requires that the gap between every pair of top-$k$ eigenvalues of $M$ is at least $\sqrt{d}$ for a similar bound. Our analysis leverages the fact that the eigenvalues of complex matrix Brownian motion repel more than in the real case, and uses Dyson's stochastic differential equations governing the evolution of its eigenvalues to show that the eigenvalues of the matrix $M$ perturbed by complex Gaussian noise have large gaps with high probability. Our results contribute to the analysis of low-rank approximations under average-case perturbations and to an understanding of eigenvalue gaps for random matrices, which may be of independent interest.

Adversarial training is a practical approach for improving the robustness of deep neural networks against adversarial attacks. Although bringing reliable robustness, the performance toward clean examples is negatively affected after adversarial training, which means a trade-off exists between accuracy and robustness. Recently, some studies have tried to use knowledge distillation methods in adversarial training, achieving competitive performance in improving the robustness but the accuracy for clean samples is still limited. In this paper, to mitigate the accuracy-robustness trade-off, we introduce the Multi-Teacher Adversarial Robustness Distillation (MTARD) to guide the model's adversarial training process by applying a strong clean teacher and a strong robust teacher to handle the clean examples and adversarial examples, respectively. During the optimization process, to ensure that different teachers show similar knowledge scales, we design the Entropy-Based Balance algorithm to adjust the teacher's temperature and keep the teachers' information entropy consistent. Besides, to ensure that the student has a relatively consistent learning speed from multiple teachers, we propose the Normalization Loss Balance algorithm to adjust the learning weights of different types of knowledge. A series of experiments conducted on public datasets demonstrate that MTARD outperforms the state-of-the-art adversarial training and distillation methods against various adversarial attacks.

We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-$k$ ($\forall k\geq 1$) consistency of LDR losses for multi-class classification, and a negative result that a top-$1$ consistent and symmetric robust loss cannot achieve top-$k$ consistency simultaneously for all $k\geq 2$; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The code is open-sourced at \url{//github.com/Optimization-AI/ICML2023_LDR}.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

北京阿比特科技有限公司