Backpressure (BP) routing is a well-established framework for distributed routing and scheduling in wireless multi-hop networks. However, the basic BP scheme suffers from poor end-to-end delay due to the drawbacks of slow startup, random walk, and the last packet problem. Biased BP with shortest path awareness can address the first two drawbacks, and sojourn time-based backlog metrics were proposed for the last packet problem. Furthermore, these BP variations require no additional signaling overhead in each time step compared to the basic BP. In this work, we further address three long-standing challenges associated with the aforementioned low-cost BP variations, including optimal scaling of the biases, bias maintenance under mobility, and incorporating sojourn time awareness into biased BP. Our analysis and experimental results show that proper scaling of biases can be achieved with the help of common link features, which can effectively reduce end-to-end delay of BP by mitigating the random walk of packets under low-to-medium traffic, including the last packet scenario. In addition, our low-overhead bias maintenance scheme is shown to be effective under mobility, and our bio-inspired sojourn time-aware backlog metric is demonstrated to be more efficient and effective for the last packet problem than existing approaches when incorporated into biased BP.
Teaching task-level directives to robots via demonstration is a popular tool to expand the robot's capabilities to interact with its environment. While current learning from demonstration systems primarily focuses on abstracting the task-level knowledge to the robot, these systems lack the ability to understand which part of the task can be already solved given the robot's prior knowledge. Therefore, instead of only requiring demonstrations of the missing pieces, these systems will require a demonstration of the complete task, which is cumbersome, repetitive, and can discourage people from helping the robot by performing the demonstrations. Therefore, we propose to use the notion of "excuses" to identify the smallest change in the robot state that makes a task, currently not solvable by the robot, solvable -- as a means to solicit more targeted demonstrations from a human. These excuses are generated automatically using combinatorial search over possible changes that can be made to the robot's state and choosing the minimum changes that make it solvable. These excuses then serve as guidance for the demonstrator who can use it to decide what to demonstrate to the robot in order to make this requested change possible, thereby making the original task solvable for the robot without having to demonstrate it in its entirety. By working with symbolic state descriptions, the excuses can be directly communicated and intuitively understood by a human demonstrator. We show empirically and in a user study that the use of excuses reduces the demonstration time by 54% and leads to a 74% reduction in demonstration size.
The paper proposes an artificial neural network (ANN) being a global approximator for a special class of functions, which are known as generalized homogeneous. The homogeneity means a symmetry of a function with respect to a group of transformations having topological characterization of a dilation. In this paper, a class of the so-called linear dilations is considered. A homogeneous universal approximation theorem is proven. Procedures for an upgrade of an existing ANN to a homogeneous one are developed. Theoretical results are supported by examples from the various domains (computer science, systems theory and automatic control).
Optimal transport (OT) and unbalanced optimal transport (UOT) are central in many machine learning, statistics and engineering applications. 1D OT is easily solved, with complexity O(n log n), but no efficient algorithm was known for 1D UOT. We present a new approach that leverages the successive shortest path algorithm for the corresponding network flow problem. By employing a suitable representation, we bundle together multiple steps that do not change the cost of the shortest path. We prove that our algorithm solves 1D UOT in O(n log n), closing the gap.
Volumetric phenomena, such as clouds and fog, present a significant challenge for 3D reconstruction systems due to their translucent nature and their complex interactions with light. Conventional techniques for reconstructing scattering volumes rely on controlled setups, limiting practical applications. This paper introduces an approach to reconstructing volumes from a few input stereo pairs. We propose a novel deep learning framework that integrates a deep stereo model with a 3D Convolutional Neural Network (3D CNN) and an advection module, capable of capturing the shape and dynamics of volumes. The stereo depths are used to carve empty space around volumes, providing the 3D CNN with a prior for coping with the lack of input views. Refining our output, the advection module leverages the temporal evolution of the medium, providing a mechanism to infer motion and improve temporal consistency. The efficacy of our system is demonstrated through its ability to estimate density and velocity fields of large-scale volumes, in this case, clouds, from a sparse set of stereo image pairs.
Graph neural networks (GNNs) have gained significant popularity for classification tasks in machine learning, yet their applications to regression problems remain limited. Concurrently, attention mechanisms have emerged as powerful tools in sequential learning tasks. In this paper, we employ GNNs and attention mechanisms to address a classical but challenging nonlinear regression problem: network localization. We propose a novel GNN-based network localization method that achieves exceptional stability and accuracy in the presence of severe non-line-of-sight (NLOS) propagations, while eliminating the need for laborious offline calibration or NLOS identification. Extensive experimental results validate the effectiveness and high accuracy of our GNN-based localization model, particularly in challenging NLOS scenarios. However, the proposed GNN-based model exhibits limited flexibility, and its accuracy is highly sensitive to a specific hyperparameter that determines the graph structure. To address the limitations and extend the applicability of the GNN-based model to real scenarios, we introduce two attentional graph neural networks (AGNNs) that offer enhanced flexibility and the ability to automatically learn the optimal hyperparameter for each node. Experimental results confirm that the AGNN models are able to enhance localization accuracy, providing a promising solution for real-world applications. We also provide some analyses of the improved performance achieved by the AGNN models from the perspectives of dynamic attention and signal denoising characteristics.
The primary objective of an anonymity tool is to protect the anonymity of its users through the implementation of strong encryption and obfuscation techniques. As a result, it becomes very difficult to monitor and identify users activities on these networks. Moreover, such systems have strong defensive mechanisms to protect users against potential risks, including the extraction of traffic characteristics and website fingerprinting. However, the strong anonymity feature also functions as a refuge for those involved in illicit activities who aim to avoid being traced on the network. As a result, a substantial body of research has been undertaken to examine and classify encrypted traffic using machine learning techniques. This paper presents a comprehensive examination of the existing approaches utilized for the categorization of anonymous traffic as well as encrypted network traffic inside the darknet. Also, this paper presents a comprehensive analysis of methods of darknet traffic using machine learning techniques to monitor and identify the traffic attacks inside the darknet.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.