Versatile and adaptive semantic understanding would enable autonomous systems to comprehend and interact with their surroundings. Existing fixed-class models limit the adaptability of indoor mobile and assistive autonomous systems. In this work, we introduce LEXIS, a real-time indoor Simultaneous Localization and Mapping (SLAM) system that harnesses the open-vocabulary nature of Large Language Models (LLMs) to create a unified approach to scene understanding and place recognition. The approach first builds a topological SLAM graph of the environment (using visual-inertial odometry) and embeds Contrastive Language-Image Pretraining (CLIP) features in the graph nodes. We use this representation for flexible room classification and segmentation, serving as a basis for room-centric place recognition. This allows loop closure searches to be directed towards semantically relevant places. Our proposed system is evaluated using both public, simulated data and real-world data, covering office and home environments. It successfully categorizes rooms with varying layouts and dimensions and outperforms the state-of-the-art (SOTA). For place recognition and trajectory estimation tasks we achieve equivalent performance to the SOTA, all also utilizing the same pre-trained model. Lastly, we demonstrate the system's potential for planning.
The surge in counterfeit signatures has inflicted widespread inconveniences and formidable challenges for both individuals and organizations. This groundbreaking research paper introduces SigScatNet, an innovative solution to combat this issue by harnessing the potential of a Siamese deep learning network, bolstered by Scattering wavelets, to detect signature forgery and assess signature similarity. The Siamese Network empowers us to ascertain the authenticity of signatures through a comprehensive similarity index, enabling precise validation and comparison. Remarkably, the integration of Scattering wavelets endows our model with exceptional efficiency, rendering it light enough to operate seamlessly on cost-effective hardware systems. To validate the efficacy of our approach, extensive experimentation was conducted on two open-sourced datasets: the ICDAR SigComp Dutch dataset and the CEDAR dataset. The experimental results demonstrate the practicality and resounding success of our proposed SigScatNet, yielding an unparalleled Equal Error Rate of 3.689% with the ICDAR SigComp Dutch dataset and an astonishing 0.0578% with the CEDAR dataset. Through the implementation of SigScatNet, our research spearheads a new state-of-the-art in signature analysis in terms of EER scores and computational efficiency, offering an advanced and accessible solution for detecting forgery and quantifying signature similarities. By employing cutting-edge Siamese deep learning and Scattering wavelets, we provide a robust framework that paves the way for secure and efficient signature verification systems.
The connections between (convex) optimization and (logconcave) sampling have been considerably enriched in the past decade with many conceptual and mathematical analogies. For instance, the Langevin algorithm can be viewed as a sampling analogue of gradient descent and has condition-number-dependent guarantees on its performance. In the early 1990s, Nesterov and Nemirovski developed the Interior-Point Method (IPM) for convex optimization based on self-concordant barriers, providing efficient algorithms for structured convex optimization, often faster than the general method. This raises the following question: can we develop an analogous IPM for structured sampling problems? In 2012, Kannan and Narayanan proposed the Dikin walk for uniformly sampling polytopes, and an improved analysis was given in 2020 by Laddha-Lee-Vempala. The Dikin walk uses a local metric defined by a self-concordant barrier for linear constraints. Here we generalize this approach by developing and adapting IPM machinery together with the Dikin walk for poly-time sampling algorithms. Our IPM-based sampling framework provides an efficient warm start and goes beyond uniform distributions and linear constraints. We illustrate the approach on important special cases, in particular giving the fastest algorithms to sample uniform, exponential, or Gaussian distributions on a truncated PSD cone. The framework is general and can be applied to other sampling algorithms.
Creating high-quality view synthesis is essential for immersive applications but continues to be problematic, particularly in indoor environments and for real-time deployment. Current techniques frequently require extensive computational time for both training and rendering, and often produce less-than-ideal 3D representations due to inadequate geometric structuring. To overcome this, we introduce VoxNeRF, a novel approach that leverages volumetric representations to enhance the quality and efficiency of indoor view synthesis. Firstly, VoxNeRF constructs a structured scene geometry and converts it into a voxel-based representation. We employ multi-resolution hash grids to adaptively capture spatial features, effectively managing occlusions and the intricate geometry of indoor scenes. Secondly, we propose a unique voxel-guided efficient sampling technique. This innovation selectively focuses computational resources on the most relevant portions of ray segments, substantially reducing optimization time. We validate our approach against three public indoor datasets and demonstrate that VoxNeRF outperforms state-of-the-art methods. Remarkably, it achieves these gains while reducing both training and rendering times, surpassing even Instant-NGP in speed and bringing the technology closer to real-time.
Radar has stronger adaptability in adverse scenarios for autonomous driving environmental perception compared to widely adopted cameras and LiDARs. Compared with commonly used 3D radars, the latest 4D radars have precise vertical resolution and higher point cloud density, making it a highly promising sensor for autonomous driving in complex environmental perception. However, due to the much higher noise than LiDAR, manufacturers choose different filtering strategies, resulting in an inverse ratio between noise level and point cloud density. There is still a lack of comparative analysis on which method is beneficial for deep learning-based perception algorithms in autonomous driving. One of the main reasons is that current datasets only adopt one type of 4D radar, making it difficult to compare different 4D radars in the same scene. Therefore, in this paper, we introduce a novel large-scale multi-modal dataset featuring, for the first time, two types of 4D radars captured simultaneously. This dataset enables further research into effective 4D radar perception algorithms.Our dataset consists of 151 consecutive series, most of which last 20 seconds and contain 10,007 meticulously synchronized and annotated frames. Moreover, our dataset captures a variety of challenging driving scenarios, including many road conditions, weather conditions, nighttime and daytime with different lighting intensities and periods. Our dataset annotates consecutive frames, which can be applied to 3D object detection and tracking, and also supports the study of multi-modal tasks. We experimentally validate our dataset, providing valuable results for studying different types of 4D radars. This dataset is released on //github.com/adept-thu/Dual-Radar.
To reduce the size of recommendation models, there have been many studies on compressing recommendation models using knowledge distillation. In this paper, we decompose recommendation models into three layers, i.e., the input layer, the intermediate layer, and the output layer, and address deficiencies layer by layer. First, previous methods focus only on two layers, neglecting the input layer. Second, in the intermediate layer, existing methods ignore the inconsistency of user preferences induced by the projectors. Third, in the output layer, existing methods use only hard labels rather than soft labels from the teacher. To address these deficiencies, we propose \textbf{M}ulti-layer \textbf{K}nowledge \textbf{D}istillation (MKD), which consists of three components: 1) Distillation with Neighbor-based Knowledge (NKD) utilizes the teacher's knowledge about entities with similar characteristics in the input layer to enable the student to learn robust representations. 2) Distillation with Consistent Preference (CPD) reduces the inconsistency of user preferences caused by projectors in the intermediate layer by two regularization terms. 3) Distillation with Soft Labels (SLD) constructs soft labels in the output layer by considering the predictions of both the teacher and the student. Our extensive experiments show that MKD even outperforms the teacher with one-tenth of the model size.
Model fusion is becoming a crucial component in the context of model-as-a-service scenarios, enabling the delivery of high-quality model services to local users. However, this approach introduces privacy risks and imposes certain limitations on its applications. Ensuring secure model exchange and knowledge fusion among users becomes a significant challenge in this setting. To tackle this issue, we propose PrivFusion, a novel architecture that preserves privacy while facilitating model fusion under the constraints of local differential privacy. PrivFusion leverages a graph-based structure, enabling the fusion of models from multiple parties without necessitating retraining. By employing randomized mechanisms, PrivFusion ensures privacy guarantees throughout the fusion process. To enhance model privacy, our approach incorporates a hybrid local differentially private mechanism and decentralized federated graph matching, effectively protecting both activation values and weights. Additionally, we introduce a perturbation filter adapter to alleviate the impact of randomized noise, thereby preserving the utility of the fused model. Through extensive experiments conducted on diverse image datasets and real-world healthcare applications, we provide empirical evidence showcasing the effectiveness of PrivFusion in maintaining model performance while preserving privacy. Our contributions offer valuable insights and practical solutions for secure and collaborative data analysis within the domain of privacy-preserving model fusion.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.