Numerous signals in relevant signal processing applications can be modeled as a sum of complex exponentials. Each exponential term entails a particular property of the modeled physical system, and it is possible to define families of signals that are associated with the complex exponentials. In this paper, we formulate a classification problem for this guiding principle and we propose a data processing strategy. In particular, we exploit the information obtained from the analytical model by combining it with data-driven learning techniques. As a result, we obtain a classification strategy that is robust under modeling uncertainties and experimental perturbations. To assess the performance of the new scheme, we test it with experimental data obtained from the scattering response of targets illuminated with an impulse radio ultra-wideband radar.
Localization of a wireless mobile device or a robot in indoor and GPS-denied environments is a difficult problem, particularly in dynamic scenarios where traditional cameras and LIDAR-based alternative sensing and localization modalities may fail. We propose a method for estimating the location of a mobile robot in relation to static wireless sensor nodes (WSN) deployed in the environment. The method employs a novel particle filter that updates its weights using a Gauss probability over Direction of Arrival (DOA) estimate in conjunction with the mobile robot's mobility model. We evaluate and validate the proposed method in terms of accuracy and computational efficiency through extensive simulations and public real-world measurement datasets, comparing with standard state-of-the-art localization approaches. The results show considerably high meter-level localization accuracy balanced by the high computational efficiency, enabling it to use online without a need for a dedicated offline phase as in typical fingerprint-based localization algorithms.
In this work the numerical solution of acoustic tomography problem based on the iterative and functional-analytical algorithms is considered. The mathematical properties of these algorithms were previously described in works of R.G.Novikov for the case of the Schr\"odinger equation. In the present work, for the case of two-dimensional scalar Helmholtz equation, the efficiency of the iterative algorithm in reconstruction of middle strength scatterers and advantages of the functional-analytical approach in recovering strong scatterers are demonstrated. A filtering procedure is considered in the space of wave vectors, which additionally increases the convergence of the iterative algorithm. Reconstruction results of sound speed perturbations demonstrate the comparable noise immunity and resolution of the considered algorithms when reconstructing middle strength scatterers. A comparative numerical investigation of the iterative and functional-analytical algorithms in inverse acoustic scattering problems is implemented in this work for the first time.
Intelligent techniques are urged to achieve automatic allocation of the computing resource in Open Radio Access Network (O-RAN), to save computing resource, increase utilization rate of them and decrease the delay. However, the existing problem formulation to solve this resource allocation problem is unsuitable as it defines the capacity utility of resource in an inappropriate way and tends to cause much delay. Moreover, the existing problem has only been attempted to be solved based on greedy search, which is not ideal as it could get stuck into local optima. Considering those, a new formulation that better describes the problem is proposed. In addition, as a well-known global search meta heuristic approach, an evolutionary algorithm (EA) is designed tailored for solving the new problem formulation, to find a resource allocation scheme to proactively and dynamically deploy the computing resource for processing upcoming traffic data. Experimental studies carried out on several real-world datasets and newly generated artificial datasets with more properties beyond the real-world datasets have demonstrated the significant superiority over a baseline greedy algorithm under different parameter settings. Moreover, experimental studies are taken to compare the proposed EA and two variants, to indicate the impact of different algorithm choices.
Wall-clock convergence time and communication load are key performance metrics for the distributed implementation of stochastic gradient descent (SGD) in parameter server settings. Communication-adaptive distributed Adam (CADA) has been recently proposed as a way to reduce communication load via the adaptive selection of workers. CADA is subject to performance degradation in terms of wall-clock convergence time in the presence of stragglers. This paper proposes a novel scheme named grouping-based CADA (G-CADA) that retains the advantages of CADA in reducing the communication load, while increasing the robustness to stragglers at the cost of additional storage at the workers. G-CADA partitions the workers into groups of workers that are assigned the same data shards. Groups are scheduled adaptively at each iteration, and the server only waits for the fastest worker in each selected group. We provide analysis and experimental results to elaborate the significant gains on the wall-clock time, as well as communication load and computation load, of G-CADA over other benchmark schemes.
In past work, we developed a computational model of the evolution of symbiotic entities (Model-S), based on Conway's Game of Life. In this article, we examine three trends that biologists have observed in the evolution of symbiotes. (1) Management: If one partner is able to control the symbiotic relation, this control can reduce conflict; thus evolutionary selection favours symbiotes that have a manager. (2) Mutualism: Although partners in symbiosis often have conflicting needs, evolutionary selection favours increasing cooperation among partners. (3) Interaction: Repeated interaction among partners in symbiosis tends to promote increasing fitness due to evolutionary selection. We have added instrumentation to Model-S that allows us to make detailed measurements, to see whether the three trends can be observed in the simulation. When we measure the fitness of a symbiote by the number of children it has, we find that fitter symbiotes have significantly more management, mutualism, and interaction than less fit symbiotes. These results confirm the trends observed in nature by biologists. Model-S allows biologists to study these evolutionary trends and other characteristics of symbiosis in ways that are not tractable with living organisms.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Graph neural networks, a popular class of models effective in a wide range of graph-based learning tasks, have been shown to be vulnerable to adversarial attacks. While the majority of the literature focuses on such vulnerability in node-level classification tasks, little effort has been dedicated to analysing adversarial attacks on graph-level classification, an important problem with numerous real-life applications such as biochemistry and social network analysis. The few existing methods often require unrealistic setups, such as access to internal information of the victim models, or an impractically-large number of queries. We present a novel Bayesian optimisation-based attack method for graph classification models. Our method is black-box, query-efficient and parsimonious with respect to the perturbation applied. We empirically validate the effectiveness and flexibility of the proposed method on a wide range of graph classification tasks involving varying graph properties, constraints and modes of attack. Finally, we analyse common interpretable patterns behind the adversarial samples produced, which may shed further light on the adversarial robustness of graph classification models.
In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.
Insufficient or even unavailable training data of emerging classes is a big challenge of many classification tasks, including text classification. Recognising text documents of classes that have never been seen in the learning stage, so-called zero-shot text classification, is therefore difficult and only limited previous works tackled this problem. In this paper, we propose a two-phase framework together with data augmentation and feature augmentation to solve this problem. Four kinds of semantic knowledge (word embeddings, class descriptions, class hierarchy, and a general knowledge graph) are incorporated into the proposed framework to deal with instances of unseen classes effectively. Experimental results show that each and the combination of the two phases achieve the best overall accuracy compared with baselines and recent approaches in classifying real-world texts under the zero-shot scenario.
The Residual Networks of Residual Networks (RoR) exhibits excellent performance in the image classification task, but sharply increasing the number of feature map channels makes the characteristic information transmission incoherent, which losses a certain of information related to classification prediction, limiting the classification performance. In this paper, a Pyramidal RoR network model is proposed by analysing the performance characteristics of RoR and combining with the PyramidNet. Firstly, based on RoR, the Pyramidal RoR network model with channels gradually increasing is designed. Secondly, we analysed the effect of different residual block structures on performance, and chosen the residual block structure which best favoured the classification performance. Finally, we add an important principle to further optimize Pyramidal RoR networks, drop-path is used to avoid over-fitting and save training time. In this paper, image classification experiments were performed on CIFAR-10/100 and SVHN datasets, and we achieved the current lowest classification error rates were 2.96%, 16.40% and 1.59%, respectively. Experiments show that the Pyramidal RoR network optimization method can improve the network performance for different data sets and effectively suppress the gradient disappearance problem in DCNN training.