Progressing towards a new era of Artificial Intelligence (AI) - enabled wireless networks, concerns regarding the environmental impact of AI have been raised both in industry and academia. Federated Learning (FL) has emerged as a key privacy preserving decentralized AI technique. Despite efforts currently being made in FL, its environmental impact is still an open problem. Targeting the minimization of the overall energy consumption of an FL process, we propose the orchestration of computational and communication resources of the involved devices to minimize the total energy required, while guaranteeing a certain performance of the model. To this end, we propose a Soft Actor Critic Deep Reinforcement Learning (DRL) solution, where a penalty function is introduced during training, penalizing the strategies that violate the constraints of the environment, and contributing towards a safe RL process. A device level synchronization method, along with a computationally cost effective FL environment are proposed, with the goal of further reducing the energy consumption and communication overhead. Evaluation results show the effectiveness and robustness of the proposed scheme compared to four state-of-the-art baseline solutions on different network environments and FL architectures, achieving a decrease of up to 94% in the total energy consumption.
This paper introduces HPC-Net, a high-precision and rapidly convergent object detection network.
This paper investigates intelligent reflecting surface (IRS)-aided multi-antenna wireless powered communications in a multi-link interference channel, where multiple IRSs are deployed to enhance the downlink/uplink communications between each pair of hybrid access point (HAP) and wireless device. Our objective is to maximize the system sum throughput by optimizing the allocation of communication resources. To attain this objective and meanwhile balance the performance-cost tradeoff, we propose three transmission schemes: the IRS-aided asynchronous (Asy) scheme, the IRS-aided time-division multiple access (TDMA) scheme, and the IRS-aided synchronous (Syn) scheme. For the resulting three non-convex design problems, we propose a general algorithmic framework capable of addressing all of them. Numerical results show that our proposed IRS-aided schemes noticeably surpass their counterparts without IRSs in both system sum throughput and total transmission energy consumption at the HAPs. Moreover, although the IRS-aided Asy scheme consistently achieves the highest sum throughput, the IRS-aided TDMA scheme is more appealing in scenarios with substantial cross-link interference and limited IRS elements, while the IRS-aided Syn scheme is preferable in low cross-link interference scenarios.
The Transformer-based deep networks have increasingly shown significant advantages over CNNs. Some existing work has applied it in the field of wildfire recognition or detection. However, we observed that the vanilla Transformer is not friendly for extracting smoke features. Because low-level information such as color, transparency and texture is very important for smoke recognition, and transformer pays more attention to the semantic relevance between middle- or high-level features, and is not sensitive to the subtle changes of low-level features along the space. To solve this problem, we propose the Cross Contrast Patch Embedding(CCPE) module based on the Swin Transformer, which uses the multi-scales spatial frequency contrast information in both vertical and horizontal directions to improve the discrimination of the network on the underlying details. The fuzzy boundary of smoke makes the positive and negative label assignment for instances in a dilemma, which is another challenge for wildfires detection. To solve this problem, a Separable Negative Sampling Mechanism(SNSM) is proposed. By using two different negative instance sampling strategies on positive images and negative images respectively, the problem of supervision signal confusion caused by label diversity in the process of network training is alleviated. This paper also releases the RealFire Test, the largest real wildfire test set so far, to evaluate the proposed method and promote future research. It contains 50,535 images from 3,649 video clips. The proposed method has been extensively tested and evaluated on RealFire Test dataset, and has a significant performance improvement compared with the baseline detection models.
The Multi-Agent Path Finding (MAPF) problem involves planning collision-free paths for multiple agents in a shared environment. The majority of MAPF solvers rely on the assumption that an agent can arrive at a specific location at a specific timestep. However, real-world execution uncertainties can cause agents to deviate from this assumption, leading to collisions and deadlocks. Prior research solves this problem by having agents follow a Temporal Plan Graph (TPG), enforcing a consistent passing order at every location as defined in the MAPF plan. However, we show that TPGs are overly strict because, in some circumstances, satisfying the passing order requires agents to wait unnecessarily, leading to longer execution time. To overcome this issue, we introduce a new graphical representation called a Bidirectional Temporal Plan Graph (BTPG), which allows switching passing orders during execution to avoid unnecessary waiting time. We design two anytime algorithms for constructing a BTPG: BTPG-na\"ive and BTPG-optimized. Experimental results show that following BTPGs consistently outperforms following TPGs, reducing unnecessary waits by 8-20%.
Despite technological advancements, the significance of interdisciplinary subjects like complex networks has grown. Exploring communication within these networks is crucial, with traffic becoming a key concern due to the expanding population and increased need for connections. Congestion tends to originate in specific network areas but quickly proliferates throughout. Consequently, understanding the transition from a flow-free state to a congested state is vital. Numerous studies have delved into comprehending the emergence and control of congestion in complex networks, falling into three general categories: soft strategies, hard strategies, and resource allocation strategies. This article introduces a routing algorithm leveraging reinforcement learning to address two primary objectives: congestion control and optimizing path length based on the shortest path algorithm, ultimately enhancing network throughput compared to previous methods. Notably, the proposed method proves effective not only in Barab\'asi-Albert scale-free networks but also in other network models such as Watts-Strogatz (small-world) and Erd\"os-R\'enyi (random network). Simulation experiment results demonstrate that, across various traffic scenarios and network topologies, the proposed method can enhance efficiency criteria by up to 30% while reducing maximum node congestion by five times.
Spiking neural networks (SNNs) take inspiration from the brain to enable energy-efficient computations. Since the advent of Transformers, SNNs have struggled to compete with artificial networks on modern sequential tasks, as they inherit limitations from recurrent neural networks (RNNs), with the added challenge of training with non-differentiable binary spiking activations. However, a recent renewed interest in efficient alternatives to Transformers has given rise to state-of-the-art recurrent architectures named state space models (SSMs). This work systematically investigates, for the first time, the intersection of state-of-the-art SSMs with SNNs for long-range sequence modelling. Results suggest that SSM-based SNNs can outperform the Transformer on all tasks of a well-established long-range sequence modelling benchmark. It is also shown that SSM-based SNNs can outperform current state-of-the-art SNNs with fewer parameters on sequential image classification. Finally, a novel feature mixing layer is introduced, improving SNN accuracy while challenging assumptions about the role of binary activations in SNNs. This work paves the way for deploying powerful SSM-based architectures, such as large language models, to neuromorphic hardware for energy-efficient long-range sequence modelling.
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.