亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advancements in large language models (LLMs) have enabled a new research domain, LLM agents, for solving robotics and planning tasks by leveraging the world knowledge and general reasoning abilities of LLMs obtained during pretraining. However, while considerable effort has been made to teach the robot the "dos," the "don'ts" received relatively less attention. We argue that, for any practical usage, it is as crucial to teach the robot the "don'ts": conveying explicit instructions about prohibited actions, assessing the robot's comprehension of these restrictions, and, most importantly, ensuring compliance. Moreover, verifiable safe operation is essential for deployments that satisfy worldwide standards such as ISO 61508, which defines standards for safely deploying robots in industrial factory environments worldwide. Aiming at deploying the LLM agents in a collaborative environment, we propose a queryable safety constraint module based on linear temporal logic (LTL) that simultaneously enables natural language (NL) to temporal constraints encoding, safety violation reasoning and explaining, and unsafe action pruning. To demonstrate the effectiveness of our system, we conducted experiments in VirtualHome environment and on a real robot. The experimental results show that our system strictly adheres to the safety constraints and scales well with complex safety constraints, highlighting its potential for practical utility.

相關內容

Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences. However, gathering high-quality human preference labels can be a time-consuming and expensive endeavor. RL from AI Feedback (RLAIF), introduced by Bai et al., offers a promising alternative that leverages a powerful off-the-shelf LLM to generate preferences in lieu of human annotators. Across the tasks of summarization, helpful dialogue generation, and harmless dialogue generation, RLAIF achieves comparable or superior performance to RLHF, as rated by human evaluators. Furthermore, RLAIF demonstrates the ability to outperform a supervised fine-tuned baseline even when the LLM preference labeler is the same size as the policy. In another experiment, directly prompting the LLM for reward scores achieves superior performance to the canonical RLAIF setup, where LLM preference labels are first distilled into a reward model. Finally, we conduct extensive studies on techniques for generating aligned AI preferences. Our results suggest that RLAIF can achieve human-level performance, offering a potential solution to the scalability limitations of RLHF.

The advent of large language models, enabling flexibility through instruction-driven approaches, has revolutionized many traditional generative tasks, but large models for 3D data, particularly in comprehensively handling 3D shapes with other modalities, are still under-explored. By achieving instruction-based shape generations, versatile multimodal generative shape models can significantly benefit various fields like 3D virtual construction and network-aided design. In this work, we present ShapeGPT, a shape-included multi-modal framework to leverage strong pre-trained language models to address multiple shape-relevant tasks. Specifically, ShapeGPT employs a word-sentence-paragraph framework to discretize continuous shapes into shape words, further assembles these words for shape sentences, as well as integrates shape with instructional text for multi-modal paragraphs. To learn this shape-language model, we use a three-stage training scheme, including shape representation, multimodal alignment, and instruction-based generation, to align shape-language codebooks and learn the intricate correlations among these modalities. Extensive experiments demonstrate that ShapeGPT achieves comparable performance across shape-relevant tasks, including text-to-shape, shape-to-text, shape completion, and shape editing.

Generative artificial intelligence (GenAI), exemplified by ChatGPT, Midjourney, and other state-of-the-art large language models and diffusion models, holds significant potential for transforming education and enhancing human productivity. While the prevalence of GenAI in education has motivated numerous research initiatives, integrating these technologies within the learning analytics (LA) cycle and their implications for practical interventions remain underexplored. This paper delves into the prospective opportunities and challenges GenAI poses for advancing LA. We present a concise overview of the current GenAI landscape and contextualise its potential roles within Clow's generic framework of the LA cycle. We posit that GenAI can play pivotal roles in analysing unstructured data, generating synthetic learner data, enriching multimodal learner interactions, advancing interactive and explanatory analytics, and facilitating personalisation and adaptive interventions. As the lines blur between learners and GenAI tools, a renewed understanding of learners is needed. Future research can delve deep into frameworks and methodologies that advocate for human-AI collaboration. The LA community can play a pivotal role in capturing data about human and AI contributions and exploring how they can collaborate most effectively. As LA advances, it is essential to consider the pedagogical implications and broader socioeconomic impact of GenAI for ensuring an inclusive future.

Large language and vision models have transformed how social movements scholars identify protest and extract key protest attributes from multi-modal data such as texts, images, and videos. This article documents how we fine-tuned two large pretrained transformer models, including longformer and swin-transformer v2, to infer potential protests in news articles using textual and imagery data. First, the longformer model was fine-tuned using the Dynamic of Collective Action (DoCA) Corpus. We matched the New York Times articles with the DoCA database to obtain a training dataset for downstream tasks. Second, the swin-transformer v2 models was trained on UCLA-protest imagery data. UCLA-protest project contains labeled imagery data with information such as protest, violence, and sign. Both fine-tuned models will be available via \url{//github.com/Joshzyj/llvms4protest}. We release this short technical report for social movement scholars who are interested in using LLVMs to infer protests in textual and imagery data.

Contemporary connected vehicles host numerous applications, such as diagnostics and navigation, and new software is continuously being developed. However, the development process typically requires offline batch processing of large data volumes. In an edge computing approach, data analysts and developers can instead process sensor data directly on computational resources inside vehicles. This enables rapid prototyping to shorten development cycles and reduce the time to create new business values or insights. This paper presents the design, implementation, and operation of the AutoSPADA edge computing platform for distributed data analytics. The platform's design follows scalability, reliability, resource efficiency, privacy, and security principles promoted through mature and industrially proven technologies. In AutoSPADA, computational tasks are general Python scripts, and we provide a library to, for example, read signals from the vehicle and publish results to the cloud. Hence, users only need Python knowledge to use the platform. Moreover, the platform is designed to be extended to support additional programming languages.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司