亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a $380$-approximation algorithm for the Nash Social Welfare problem with submodular valuations. Our algorithm builds on and extends a recent constant-factor approximation for Rado valuations.

相關內容

Continuous determinantal point processes (DPPs) are a class of repulsive point processes on $\mathbb{R}^d$ with many statistical applications. Although an explicit expression of their density is known, it is too complicated to be used directly for maximum likelihood estimation. In the stationary case, an approximation using Fourier series has been suggested, but it is limited to rectangular observation windows and no theoretical results support it. In this contribution, we investigate a different way to approximate the likelihood by looking at its asymptotic behaviour when the observation window grows towards $\mathbb{R}^d$. This new approximation is not limited to rectangular windows, is faster to compute than the previous one, does not require any tuning parameter, and some theoretical justifications are provided. It moreover provides an explicit formula for estimating the asymptotic variance of the associated estimator. The performances are assessed in a simulation study on standard parametric models on $\mathbb{R}^d$ and compare favourably to common alternative estimation methods for continuous DPPs.

\emph{$K$-best enumeration}, which asks to output $k$ best solutions without duplication, plays an important role in data analysis for many fields. In such fields, data can be typically represented by graphs, and thus subgraph enumeration has been paid much attention to. However, $k$-best enumeration tends to be intractable since, in many cases, finding one optimum solution is \NP-hard. To overcome this difficulty, we combine $k$-best enumeration with a new concept of enumeration algorithms called \emph{approximation enumeration algorithms}, which has been recently proposed. As a main result, we propose an $\alpha$-approximation algorithm for minimal connected edge dominating sets which outputs $k$ minimal solutions with cardinality at most $\alpha\cdot\overline{\rm OPT}$, where $\overline{\rm OPT}$ is the cardinality of a mini\emph{mum} solution which is \emph{not} outputted by the algorithm, and $\alpha$ is constant. Moreover, our proposed algorithm runs in $O(nm^2\Delta)$ delay, where $n$, $m$, $\Delta$ are the number of vertices, the number of edges, and the maximum degree of an input graph.

Much of the theory for the lasso in the linear model $Y = X \beta^* + \varepsilon$ hinges on the quantity $2 \| X^\top \varepsilon \|_{\infty} / n$, which we call the lasso's effective noise. Among other things, the effective noise plays an important role in finite-sample bounds for the lasso, the calibration of the lasso's tuning parameter, and inference on the parameter vector $\beta^*$. In this paper, we develop a bootstrap-based estimator of the quantiles of the effective noise. The estimator is fully data-driven, that is, does not require any additional tuning parameters. We equip our estimator with finite-sample guarantees and apply it to tuning parameter calibration for the lasso and to high-dimensional inference on the parameter vector $\beta^*$.

Covering option discovery has been developed to improve the exploration of reinforcement learning in single-agent scenarios with sparse reward signals, through connecting the most distant states in the embedding space provided by the Fiedler vector of the state transition graph. However, these option discovery methods cannot be directly extended to multi-agent scenarios, since the joint state space grows exponentially with the number of agents in the system. Thus, existing researches on adopting options in multi-agent scenarios still rely on single-agent option discovery and fail to directly discover the joint options that can improve the connectivity of the joint state space of agents. In this paper, we show that it is indeed possible to directly compute multi-agent options with collaborative exploratory behaviors among the agents, while still enjoying the ease of decomposition. Our key idea is to approximate the joint state space as a Kronecker graph -- the Kronecker product of individual agents' state transition graphs, based on which we can directly estimate the Fiedler vector of the joint state space using the Laplacian spectrum of individual agents' transition graphs. This decomposition enables us to efficiently construct multi-agent joint options by encouraging agents to connect the sub-goal joint states which are corresponding to the minimum or maximum values of the estimated joint Fiedler vector. The evaluation based on multi-agent collaborative tasks shows that the proposed algorithm can successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options, in terms of both faster exploration and higher cumulative rewards.

The Elo rating system is widely adopted to evaluate the skills of (chess) game and sports players. Recently it has been also integrated into machine learning algorithms in evaluating the performance of computerised AI agents. However, an accurate estimation of the Elo rating (for the top players) often requires many rounds of competitions, which can be expensive to carry out. In this paper, to improve the sample efficiency of the Elo evaluation (for top players), we propose an efficient online match scheduling algorithm. Specifically, we identify and match the top players through a dueling bandits framework and tailor the bandit algorithm to the gradient-based update of Elo. We show that it reduces the per-step memory and time complexity to constant, compared to the traditional likelihood maximization approaches requiring $O(t)$ time. Our algorithm has a regret guarantee of $\tilde{O}(\sqrt{T})$, sublinear in the number of competition rounds and has been extended to the multidimensional Elo ratings for handling intransitive games. We empirically demonstrate that our method achieves superior convergence speed and time efficiency on a variety of gaming tasks.

We formulate an efficient approximation for multi-agent batch reinforcement learning, the approximated multi-agent fitted Q iteration (AMAFQI). We present a detailed derivation of our approach. We propose an iterative policy search and show that it yields a greedy policy with respect to multiple approximations of the centralized, learned Q-function. In each iteration and policy evaluation, AMAFQI requires a number of computations that scales linearly with the number of agents whereas the analogous number of computations increase exponentially for the fitted Q iteration (FQI), a commonly used approaches in batch reinforcement learning. This property of AMAFQI is fundamental for the design of a tractable multi-agent approach. We evaluate the performance of AMAFQI and compare it to FQI in numerical simulations. The simulations illustrate the significant computation time reduction when using AMAFQI instead of FQI in multi-agent problems and corroborate the similar performance of both approaches.

We study the problem of fairly allocating a set of m indivisible chores (items with non-positive value) to n agents. We consider the desirable fairness notion of 1-out-of-d maximin share (MMS) -- the minimum value that an agent can guarantee by partitioning items into d bundles and receiving the least valued bundle -- and focus on ordinal approximation of MMS that aims at finding the largest d <= n for which 1-out-of-d MMS allocation exists. Our main contribution is a polynomial-time algorithm for 1-out-of-floor(2n/3) MMS allocation, and a proof of existence of 1-out-of-floor(3n/4) MMS allocation of chores. Furthermore, we show how to use recently-developed algorithms for bin-packing to approximate the latter bound up to a logarithmic factor in polynomial time.

We study the problem of allocating indivisible goods among agents in a fair manner. While envy-free allocations of indivisible goods are not guaranteed to exist, envy-freeness can be achieved by additionally providing some subsidy to the agents. These subsidies can be alternatively viewed as a divisible good (money) that is fractionally assigned among the agents to realize an envy-free outcome. In this setup, we bound the subsidy required to attain envy-freeness among agents with dichotomous valuations, i.e., among agents whose marginal value for any good is either zero or one. We prove that, under dichotomous valuations, there exists an allocation that achieves envy-freeness with a per-agent subsidy of either $0$ or $1$. Furthermore, such an envy-free solution can be computed efficiently in the standard value-oracle model. Notably, our results hold for general dichotomous valuations and, in particular, do not require the (dichotomous) valuations to be additive, submodular, or even subadditive. Also, our subsidy bounds are tight and provide a linear (in the number of agents) factor improvement over the bounds known for general monotone valuations.

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

北京阿比特科技有限公司