亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A characteristic of existing predictive process monitoring techniques is to first construct a predictive model based on past process executions, and then use it to predict the future of new ongoing cases, without the possibility of updating it with new cases when they complete their execution. This can make predictive process monitoring too rigid to deal with the variability of processes working in real environments that continuously evolve and/or exhibit new variant behaviors over time. As a solution to this problem, we propose the use of algorithms that allow the incremental construction of the predictive model. These incremental learning algorithms update the model whenever new cases become available so that the predictive model evolves over time to fit the current circumstances. The algorithms have been implemented using different case encoding strategies and evaluated on a number of real and synthetic datasets. The results provide a first evidence of the potential of incremental learning strategies for predicting process monitoring in real environments, and of the impact of different case encoding strategies in this setting.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Industrial process tomography (IPT) is a specialized imaging technique widely used in industrial scenarios for process supervision and control. Today, augmented/mixed reality (AR/MR) is increasingly being adopted in many industrial occasions, even though there is still an obvious gap when it comes to IPT. To bridge this gap, we propose the first systematic AR approach using optical see-through (OST) head mounted displays (HMDs) with comparative evaluation for domain users towards IPT visualization analysis. The proof-of-concept was demonstrated by a within-subject user study (n=20) with counterbalancing design. Both qualitative and quantitative measurements were investigated. The results showed that our AR approach outperformed conventional settings for IPT data visualization analysis in bringing higher understandability, reduced task completion time, lower error rates for domain tasks, increased usability with enhanced user experience, and a better recommendation level. We summarize the findings and suggest future research directions for benefiting IPT users with AR/MR.

Post hoc explanations have emerged as a way to improve user trust in machine learning models by providing insight into model decision-making. However, explanations tend to be evaluated based on their alignment with prior knowledge while the faithfulness of an explanation with respect to the model, a fundamental criterion, is often overlooked. Furthermore, the effect of explanation faithfulness and alignment on user trust and whether this effect differs among laypeople and domain experts is unclear. To investigate these questions, we conduct a user study with computer science students and doctors in three domain areas, controlling the laypeople and domain expert groups in each setting. The results indicate that laypeople base their trust in explanations on explanation faithfulness while domain experts base theirs on explanation alignment. To our knowledge, this work is the first to show that (1) different factors affect laypeople and domain experts' trust in post hoc explanations and (2) domain experts are subject to specific biases due to their expertise when interpreting post hoc explanations. By uncovering this phenomenon and exposing this cognitive bias, this work motivates the need to educate end users about how to properly interpret explanations and overcome their own cognitive biases, and motivates the development of simple and interpretable faithfulness metrics for end users. This research is particularly important and timely as post hoc explanations are increasingly being used in high-stakes, real-world settings such as medicine.

Post hoc explanations have emerged as a way to improve user trust in machine learning models by providing insight into model decision-making. However, explanations tend to be evaluated based on their alignment with prior knowledge while the faithfulness of an explanation with respect to the model, a fundamental criterion, is often overlooked. Furthermore, the effect of explanation faithfulness and alignment on user trust and whether this effect differs among laypeople and domain experts is unclear. To investigate these questions, we conduct a user study with computer science students and doctors in three domain areas, controlling the laypeople and domain expert groups in each setting. The results indicate that laypeople base their trust in explanations on explanation faithfulness while domain experts base theirs on explanation alignment. To our knowledge, this work is the first to show that (1) different factors affect laypeople and domain experts' trust in post hoc explanations and (2) domain experts are subject to specific biases due to their expertise when interpreting post hoc explanations. By uncovering this phenomenon and exposing this cognitive bias, this work motivates the need to educate end users about how to properly interpret explanations and overcome their own cognitive biases, and motivates the development of simple and interpretable faithfulness metrics for end users. This research is particularly important and timely as post hoc explanations are increasingly being used in high-stakes, real-world settings such as medicine.

Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter - we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for semantic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detect_sarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they not only write code, but also selectively "emulate" the interpreter by generating the expected output of "detect_sarcasm(string)" and other lines of code that cannot be executed. In this work, we propose Chain of Code (CoC), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format semantic sub-tasks in a program as flexible pseudocode that the interpreter can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. CoC scales well with large and small models alike, and broadens the scope of reasoning questions that LMs can correctly answer by "thinking in code". Project webpage: //chain-of-code.github.io.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司