Plagiarism is a pressing concern, even more so with the availability of large language models. Existing plagiarism detection systems reliably find copied and moderately reworded text but fail for idea plagiarism, especially in mathematical science, which heavily uses formal mathematical notation. We make two contributions. First, we establish a taxonomy of mathematical content reuse by annotating potentially plagiarised 122 scientific document pairs. Second, we analyze the best-performing approaches to detect plagiarism and mathematical content similarity on the newly established taxonomy. We found that the best-performing methods for plagiarism and math content similarity achieve an overall detection score (PlagDet) of 0.06 and 0.16, respectively. The best-performing methods failed to detect most cases from all seven newly established math similarity types. Outlined contributions will benefit research in plagiarism detection systems, recommender systems, question-answering systems, and search engines. We make our experiment's code and annotated dataset available to the community: //github.com/gipplab/Taxonomy-of-Mathematical-Plagiarism
In this paper, we introduce a sociolinguistic perspective on language modeling. We claim that large language models are inherently models of varieties of language, and we consider how this insight can inform the development and deployment of large language models. We begin by presenting a technical definition of the concept of a variety of language as developed in sociolinguistics. We then discuss how this perspective can help address five basic challenges in language modeling: social bias, domain adaptation, alignment, language change, and scale. Ultimately, we argue that it is crucial to carefully define and compile training corpora that accurately represent the specific varieties of language being modeled to maximize the performance and societal value of large language models.
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI across various industries. Industry and research community have witnessed a large number of new applications, based on those foundation models. Such applications include question and answer, customer services, image and video generation, and code completions, among others. However, as the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios. As a result, the demand for cost-effective and fast inference using AI accelerators is ever more higher. To this end, our tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators. Beginning with an overview of basic Transformer architectures and deep learning system frameworks, we deep dive into system optimization techniques for fast and memory-efficient attention computations and discuss how they can be implemented efficiently on AI accelerators. Next, we describe architectural elements that are key for fast transformer inference. Finally, we examine various model compression and fast decoding strategies in the same context.
Answer Set Programming (ASP) is a declarative problem solving paradigm that can be used to encode a combinatorial problem as a logic program whose stable models correspond to the solutions of the considered problem. ASP has been widely applied to various domains in AI and beyond. The question "What can be said about stable models of a logic program from its static information?" has been investigated and proved useful in many circumstances. In this work, we dive into this direction more deeply by making the connection between a logic program and a Boolean network, which is a prominent modeling framework with applications to various areas. The proposed connection can bring the existing results in the rich history on static analysis of Boolean networks to explore and prove more theoretical results on ASP, making it become a unified and powerful tool to further study the static analysis of ASP. In particular, the newly obtained insights have the potential to benefit many problems in the field of ASP.
Recent advancements in Large Language Models (LLMs) have significantly extended their capabilities, evolving from basic text generation to complex, human-like interactions. In light of the possibilities that LLMs could assume significant workplace responsibilities, it becomes imminently necessary to explore LLMs' capacities as professional assistants. This study focuses on the aspect of career interests by applying the Occupation Network's Interest Profiler short form to LLMs as if they were human participants and investigates their hypothetical career interests and competence, examining how these vary with language changes and model advancements. We analyzed the answers using a general linear mixed model approach and found distinct career interest inclinations among LLMs, particularly towards the social and artistic domains. Interestingly, these preferences did not align with the occupations where LLMs exhibited higher competence. This novel approach of using psychometric instruments and sophisticated statistical tools on LLMs unveils fresh perspectives on their integration into professional environments, highlighting human-like tendencies and promoting a reevaluation of LLMs' self-perception and competency alignment in the workforce.
Large Language Models (LLMs) have made significant strides in natural language processing, and a precise understanding of the internal mechanisms driving their success is essential. We regard LLMs as transforming embeddings via a discrete, coupled, nonlinear, dynamical system in high dimensions. This perspective motivates tracing the trajectories of individual tokens as they pass through transformer blocks, and linearizing the system along these trajectories through their Jacobian matrices. In our analysis of 38 openly available LLMs, we uncover the alignment of top left and right singular vectors of Residual Jacobians, as well as the emergence of linearity and layer-wise exponential growth. Notably, we discover that increased alignment $\textit{positively correlates}$ with model performance. Metrics evaluated post-training show significant improvement in comparison to measurements made with randomly initialized weights, highlighting the significant effects of training in transformers. These findings reveal a remarkable level of regularity that has previously been overlooked, reinforcing the dynamical interpretation and paving the way for deeper understanding and optimization of LLM architectures.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.