亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image segmentation is one of the most fundamental problems in computer vision and has drawn a lot of attentions due to its vast applications in image understanding and autonomous driving. However, designing effective and efficient segmentation neural architectures is a labor-intensive process that may require lots of trials by human experts. In this paper, we address the challenge of integrating multi-head self-attention into high resolution representation CNNs efficiently, by leveraging architecture search. Manually replacing convolution layers with multi-head self-attention is non-trivial due to the costly overhead in memory to maintain high resolution. By contrast, we develop a multi-target multi-branch supernet method, which not only fully utilizes the advantages of high-resolution features, but also finds the proper location for placing multi-head self-attention module. Our search algorithm is optimized towards multiple objective s (e.g., latency and mIoU) and capable of finding architectures on Pareto frontier with arbitrary number of branches in a single search. We further present a series of model via Hybrid Convolutional-Transformer Architecture Search (HyCTAS) method that searched for the best hybrid combination of light-weight convolution layers and memory-efficient self-attention layers between branches from different resolutions and fuse to high resolution for both efficiency and effectiveness. Extensive experiments demonstrate that HyCTAS outperforms previous methods on semantic segmentation task. Code and models are available at \url{//github.com/MarvinYu1995/HyCTAS}.

相關內容

Smishing, also known as SMS phishing, is a type of fraudulent communication in which an attacker disguises SMS communications to deceive a target into providing their sensitive data. Smishing attacks use a variety of tactics; however, they have a similar goal of stealing money or personally identifying information (PII) from a victim. In response to these attacks, a wide variety of anti-smishing tools have been developed to block or filter these communications. Despite this, the number of phishing attacks continue to rise. In this paper, we developed a test bed for measuring the effectiveness of popular anti-smishing tools against fresh smishing attacks. To collect fresh smishing data, we introduce Smishtank.com, a collaborative online resource for reporting and collecting smishing data sets. The SMS messages were validated by a security expert and an in-depth qualitative analysis was performed on the collected messages to provide further insights. To compare tool effectiveness, we experimented with 20 smishing and benign messages across 3 key segments of the SMS messaging delivery ecosystem. Our results revealed significant room for improvement in all 3 areas against our smishing set. Most anti-phishing apps and bulk messaging services didn't filter smishing messages beyond the carrier blocking. The 2 apps that blocked the most smish also blocked 85-100\% of benign messages. Finally, while carriers did not block any benign messages, they were only able to reach a 25-35\% blocking rate for smishing messages. Our work provides insights into the performance of anti-smishing tools and the roles they play in the message blocking process. This paper would enable the research community and industry to be better informed on the current state of anti-smishing technology on the SMS platform.

We propose a distributed implementation for integrated sensing and communication (ISAC) backed by a massive multiple input multiple output (CF-mMIMO) architecture without cells. Distributed multi-antenna access points (APs) simultaneously serve communication users (UEs) and emit probing signals towards multiple specified zones for sensing. The APs can switch between communication and sensing modes, and adjust their transmit power based on the network settings and sensing and communication operations' requirements. By considering local partial zero-forcing and maximum-ratio-transmit precoding at the APs for communication and sensing, respectively, we first derive closed-form expressions for the spectral efficiency (SE) of the UEs and the mainlobe-to-average-sidelobe ratio (MASR) of the sensing zones. Then, a joint operation mode selection and power control design problem is formulated to maximize the SE fairness among the UEs, while ensuring specific levels of MASR for sensing zones. The complicated mixed-integer problem is relaxed and solved via successive convex approximation approach. We further propose a low-complexity design, where AP mode selection is designed through a greedy algorithm and then power control is designed based on this chosen mode. Our findings reveal that the proposed scheme can consistently ensure a sensing success rate of $100\%$ for different network setups with a satisfactory fairness among all UEs.

In many applications, ranging from logistics to engineering, a designer is faced with a sequence of optimization tasks for which the objectives are in the form of black-box functions that are costly to evaluate. For example, the designer may need to tune the hyperparameters of neural network models for different learning tasks over time. Rather than evaluating the objective function for each candidate solution, the designer may have access to approximations of the objective functions, for which higher-fidelity evaluations entail a larger cost. Existing multi-fidelity black-box optimization strategies select candidate solutions and fidelity levels with the goal of maximizing the information accrued about the optimal value or solution for the current task. Assuming that successive optimization tasks are related, this paper introduces a novel information-theoretic acquisition function that balances the need to acquire information about the current task with the goal of collecting information transferable to future tasks. The proposed method includes shared inter-task latent variables, which are transferred across tasks by implementing particle-based variational Bayesian updates. Experimental results across synthetic and real-world examples reveal that the proposed provident acquisition strategy that caters to future tasks can significantly improve the optimization efficiency as soon as a sufficient number of tasks is processed.

Near-field propagation, particularly that enabled by reconfigurable intelligent surfaces (RIS), has emerged as a promising research topic in recent years. However, a comprehensive literature review on RIS-based near-field technologies is still lacking. This article aims to fill this gap by providing a brief overview of near-field concepts and a systematic survey of the state-of-the-art RIS-based near-field technologies. The focus is on three key aspects: the construction of ubiquitous near-field wireless propagation environments using RIS, the enabling of new near-field paradigms for 6G networks through RIS, and the challenges faced by RIS-based near-field technologies. This technical review intends to facilitate the development and innovation of RIS-based near-field technologies.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司