Nowadays, many modern applications require heterogeneous tabular data, which is still a challenging task in terms of regression and classification. Many approaches have been proposed to adapt neural networks for this task, but still, boosting and bagging of decision trees are the best-performing methods for this task. In this paper, we show that a binomial initialized neural network can be used effectively on tabular data. The proposed approach shows a simple but effective approach for initializing the first hidden layer in neural networks. We also show that this initializing schema can be used to jointly train ensembles by adding gradient masking to batch entries and using the binomial initialization for the last layer in a neural network. For this purpose, we modified the hinge binary loss and the soft max loss to make them applicable for joint ensemble training. We evaluate our approach on multiple public datasets and showcase the improved performance compared to other neural network-based approaches. In addition, we discuss the limitations and possible further research of our approach for improving the applicability of neural networks to tabular data. Link: //es-cloud.cs.uni-tuebingen.de/d/8e2ab8c3fdd444e1a135/?p=%2FInitializationNeuronalNetworksTabularData&mode=list
Reasoning, a crucial aspect of NLP research, has not been adequately addressed by prevailing models including Large Language Model. Conversation reasoning, as a critical component of it, remains largely unexplored due to the absence of a well-designed cognitive model. In this paper, inspired by intuition theory on conversation cognition, we develop a conversation cognitive model (CCM) that explains how each utterance receives and activates channels of information recursively. Besides, we algebraically transformed CCM into a structural causal model (SCM) under some mild assumptions, rendering it compatible with various causal discovery methods. We further propose a probabilistic implementation of the SCM for utterance-level relation reasoning. By leveraging variational inference, it explores substitutes for implicit causes, addresses the issue of their unobservability, and reconstructs the causal representations of utterances through the evidence lower bounds. Moreover, we constructed synthetic and simulated datasets incorporating implicit causes and complete cause labels, alleviating the current situation where all available datasets are implicit-causes-agnostic. Extensive experiments demonstrate that our proposed method significantly outperforms existing methods on synthetic, simulated, and real-world datasets. Finally, we analyze the performance of CCM under latent confounders and propose theoretical ideas for addressing this currently unresolved issue.
In numerous applications, binary reactions or event counts are observed and stored within high-order tensors. Tensor decompositions (TDs) serve as a powerful tool to handle such high-dimensional and sparse data. However, many traditional TDs are explicitly or implicitly designed based on the Gaussian distribution, which is unsuitable for discrete data. Moreover, most TDs rely on predefined multi-linear structures, such as CP and Tucker formats. Therefore, they may not be effective enough to handle complex real-world datasets. To address these issues, we propose ENTED, an \underline{E}fficient \underline{N}onparametric \underline{TE}nsor \underline{D}ecomposition for binary and count tensors. Specifically, we first employ a nonparametric Gaussian process (GP) to replace traditional multi-linear structures. Next, we utilize the \pg augmentation which provides a unified framework to establish conjugate models for binary and count distributions. Finally, to address the computational issue of GPs, we enhance the model by incorporating sparse orthogonal variational inference of inducing points, which offers a more effective covariance approximation within GPs and stochastic natural gradient updates for nonparametric models. We evaluate our model on several real-world tensor completion tasks, considering binary and count datasets. The results manifest both better performance and computational advantages of the proposed model.
Decentralized applications (DApps), which are innovative blockchain-powered software systems designed to serve as the fundamental building blocks for the next generation of Internet services, have witnessed exponential growth in recent years. This paper thoroughly compares and analyzes two blockchain-based decentralized storage networks (DSNs), which are crucial foundations for DApp and blockchain ecosystems. The study examines their respective mechanisms for data persistence, strategies for enforcing data retention, and token economics. In addition to delving into technical details, the suitability of each storage solution for decentralized application development is assessed, taking into consideration network performance, storage costs, and existing use cases. By evaluating these factors, the paper aims to provide insights into the effectiveness of these technologies in supporting the desirable properties of truly decentralized blockchain applications. In conclusion, the findings of this research are discussed and synthesized, offering valuable perspectives on the capabilities of these technologies. It sheds light on their potential to facilitate the development of DApps and provides an understanding of the ongoing trends in blockchain development.
To address the challenge of identifying hidden danger in substations from unstructured text, a novel dynamic analysis method is proposed. We first extract relevant information from the unstructured text, and then leverages a flexible distributed search engine built on Elastic-Search to handle the data. Following this, the hidden Markov model is employed to train the data within the engine. The Viterbi algorithm is integrated to decipher the hidden state sequences, facilitating the segmentation and labeling of entities related to hidden dangers. The final step involves using the Neo4j graph database to dynamically create a knowledge graph that visualizes hidden dangers in the substation. The effectiveness of the proposed method is demonstrated through a case analysis from a specific substation with hidden dangers revealed in the text records.
Product states, unentangled tensor products of single qubits, are a ubiquitous ansatz in quantum computation, including for state-of-the-art Hamiltonian approximation algorithms. A natural question is whether we should expect to efficiently solve product state problems on any interesting families of Hamiltonians. We completely classify the complexity of finding minimum-energy product states for Hamiltonians defined by any fixed set of allowed 2-qubit interactions. Our results follow a line of work classifying the complexity of solving Hamiltonian problems and classical constraint satisfaction problems based on the allowed constraints. We prove that estimating the minimum energy of a product state is in P if and only if all allowed interactions are 1-local, and NP-complete otherwise. Equivalently, any family of non-trivial two-body interactions generates Hamiltonians with NP-complete product-state problems. Our hardness constructions only require coupling strengths of constant magnitude. A crucial component of our proofs is a collection of hardness results for a new variant of the Vector Max-Cut problem, which should be of independent interest. Our definition involves sums of distances rather than squared distances and allows linear stretches. A corollary of our classification is a new proof that optimizing product states in the Quantum Max-Cut model (the quantum Heisenberg model) is NP-complete.
As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.