亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Facial expression recognition has gained significance as a means of imparting social robots with the capacity to discern the emotional states of users. The use of social robotics includes a variety of settings, including homes, nursing homes or daycare centers, serving to a wide range of users. Remarkable performance has been achieved by deep learning approaches, however, its direct use for recognizing facial expressions in individuals with intellectual disabilities has not been yet studied in the literature, to the best of our knowledge. To address this objective, we train a set of 12 convolutional neural networks in different approaches, including an ensemble of datasets without individuals with intellectual disabilities and a dataset featuring such individuals. Our examination of the outcomes, both the performance and the important image regions for the models, reveals significant distinctions in facial expressions between individuals with and without intellectual disabilities, as well as among individuals with intellectual disabilities. Remarkably, our findings show the need of facial expression recognition within this population through tailored user-specific training methodologies, which enable the models to effectively address the unique expressions of each user.

相關內容

Automatically generating data visualizations in response to human utterances on datasets necessitates a deep semantic understanding of the data utterance, including implicit and explicit references to data attributes, visualization tasks, and necessary data preparation steps. Natural Language Interfaces (NLIs) for data visualization have explored ways to infer such information, yet challenges persist due to inherent uncertainty in human speech. Recent advances in Large Language Models (LLMs) provide an avenue to address these challenges, but their ability to extract the relevant semantic information remains unexplored. In this study, we evaluate four publicly available LLMs (GPT-4, Gemini-Pro, Llama3, and Mixtral), investigating their ability to comprehend utterances even in the presence of uncertainty and identify the relevant data context and visual tasks. Our findings reveal that LLMs are sensitive to uncertainties in utterances. Despite this sensitivity, they are able to extract the relevant data context. However, LLMs struggle with inferring visualization tasks. Based on these results, we highlight future research directions on using LLMs for visualization generation.

Despite the success of input transformation-based attacks on boosting adversarial transferability, the performance is unsatisfying due to the ignorance of the discrepancy across models. In this paper, we propose a simple but effective feature augmentation attack (FAUG) method, which improves adversarial transferability without introducing extra computation costs. Specifically, we inject the random noise into the intermediate features of the model to enlarge the diversity of the attack gradient, thereby mitigating the risk of overfitting to the specific model and notably amplifying adversarial transferability. Moreover, our method can be combined with existing gradient attacks to augment their performance further. Extensive experiments conducted on the ImageNet dataset across CNN and transformer models corroborate the efficacy of our method, e.g., we achieve improvement of +26.22% and +5.57% on input transformation-based attacks and combination methods, respectively.

Continual learning seeks to empower models to progressively acquire information from a sequence of tasks. This approach is crucial for many real-world systems, which are dynamic and evolve over time. Recent research has witnessed a surge in the exploration of Graph Neural Networks (GNN) in Node-wise Graph Continual Learning (NGCL), a practical yet challenging paradigm involving the continual training of a GNN on node-related tasks. Despite recent advancements in continual learning strategies for GNNs in NGCL, a thorough theoretical understanding, especially regarding its learnability, is lacking. Learnability concerns the existence of a learning algorithm that can produce a good candidate model from the hypothesis/weight space, which is crucial for model selection in NGCL development. This paper introduces the first theoretical exploration of the learnability of GNN in NGCL, revealing that learnability is heavily influenced by structural shifts due to the interconnected nature of graph data. Specifically, GNNs may not be viable for NGCL under significant structural changes, emphasizing the need to manage structural shifts. To mitigate the impact of structural shifts, we propose a novel experience replay method termed Structure-Evolution-Aware Experience Replay (SEA-ER). SEA-ER features an innovative experience selection strategy that capitalizes on the topological awareness of GNNs, alongside a unique replay strategy that employs structural alignment to effectively counter catastrophic forgetting and diminish the impact of structural shifts on GNNs in NGCL. Our extensive experiments validate our theoretical insights and the effectiveness of SEA-ER.

We investigate the limiting behavior of the Navier-Stokes-Cahn-Hilliard model for binary-fluid flows as the diffuse-interface thickness passes to zero, in the presence of fluid-fluid-solid contact lines. Allowing for motion of such contact lines relative to the solid substrate is required to adequately model multi-phase and multi-species fluid transport past and through solid media. Even though diffuse-interface models provide an inherent slip mechanism through the mobility-induced diffusion, this slip vanishes as the interface thickness and mobility parameter tend to zero in the so-called sharp-interface limit. The objective of this work is to present dynamic wetting and generalized Navier boundary conditions for diffuse-interface models that are consistent in the sharp-interface limit. We concentrate our analysis on the prototypical binary-fluid Couette-flow problems. To verify the consistency of the diffuse-interface model in the limit of vanishing interface thickness, we provide reference limit solutions of a corresponding sharp-interface model. For parameter values both at and away from the critical viscosity ratio, we present and compare the results of both the diffuse- and sharp-interface models. The close match between both model results indicates that the considered test case lends itself well as a benchmark for further research.

The emergence of heterogeneity in high-performance computing, which harnesses under one integrated system several platforms of different architectures, also led to the development of innovative cross-platform programming models. Along with the expectation that these models will yield computationally intensive performance, there is demand for them to provide a reasonable degree of performance portability. Therefore, new tools and metrics are being developed to measure and calculate the level of performance portability of applications and programming models. The ultimate measure of performance portability is performance efficiency. Performance efficiency refers to the achieved performance as a fraction of some peak theoretical or practical baseline performance. Application efficiency approaches are the most popular and attractive performance efficiency measures among researchers because they are simple to measure and calculate. Unfortunately, the way they are used yields results that do not make sense, while violating one of the basic criteria that defines and characterizes the performance portability metrics. In this paper, we demonstrate how researchers currently use application efficiency to calculate the performance portability of applications and explain why this method deviates from its original definition. Then, we show why the obtained results do not make sense and propose practical solutions that satisfy the definition and criteria of performance portability metrics.

Performance evaluation of particular channel coding has been a significant topic in coding theory, often involving the use of bounding techniques. This paper focuses on the new family of capacity-achieving codes, Spinal codes, to provide a comprehensive analysis framework to tightly upper bound the block error rate (BLER) of Spinal codes in the finite block length (FBL) regime. First, we resort to a variant of the Gallager random coding bound to upper bound the BLER of Spinal codes over the fading channel. Then, this paper derives a new bound without resorting to the use of Gallager random coding bound, achieving provable tightness over the wide range of signal-to-noise ratios (SNR). The derived BLER upper bounds in this paper are generalized, facilitating the performance evaluations of Spinal codes over different types of fast fading channels. Over the Rayleigh, Nakagami-m, and Rician fading channels, this paper explicitly derived the BLER upper bounds on Spinal codes as case studies. Based on the bounds, we theoretically reveal that the tail transmission pattern (TTP) for ML-decoded Spinal codes remains optimal in terms of reliability performance. Simulations verify the tightness of the bounds and the insights obtained.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司