亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent 3D generative models have achieved remarkable performance in synthesizing high resolution photorealistic images with view consistency and detailed 3D shapes, but training them for diverse domains is challenging since it requires massive training images and their camera distribution information. Text-guided domain adaptation methods have shown impressive performance on converting the 2D generative model on one domain into the models on other domains with different styles by leveraging the CLIP (Contrastive Language-Image Pre-training), rather than collecting massive datasets for those domains. However, one drawback of them is that the sample diversity in the original generative model is not well-preserved in the domain-adapted generative models due to the deterministic nature of the CLIP text encoder. Text-guided domain adaptation will be even more challenging for 3D generative models not only because of catastrophic diversity loss, but also because of inferior text-image correspondence and poor image quality. Here we propose DATID-3D, a domain adaptation method tailored for 3D generative models using text-to-image diffusion models that can synthesize diverse images per text prompt without collecting additional images and camera information for the target domain. Unlike 3D extensions of prior text-guided domain adaptation methods, our novel pipeline was able to fine-tune the state-of-the-art 3D generator of the source domain to synthesize high resolution, multi-view consistent images in text-guided targeted domains without additional data, outperforming the existing text-guided domain adaptation methods in diversity and text-image correspondence. Furthermore, we propose and demonstrate diverse 3D image manipulations such as one-shot instance-selected adaptation and single-view manipulated 3D reconstruction to fully enjoy diversity in text.

相關內容

Diffusion model based language-guided image editing has achieved great success recently. However, existing state-of-the-art diffusion models struggle with rendering correct text and text style during generation. To tackle this problem, we propose a universal self-supervised text editing diffusion model (DiffUTE), which aims to replace or modify words in the source image with another one while maintaining its realistic appearance. Specifically, we build our model on a diffusion model and carefully modify the network structure to enable the model for drawing multilingual characters with the help of glyph and position information. Moreover, we design a self-supervised learning framework to leverage large amounts of web data to improve the representation ability of the model. Experimental results show that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity. Our code will be avaliable in \url{//github.com/chenhaoxing/DiffUTE}.

This research paper proposes a Latent Diffusion Model for 3D (LDM3D) that generates both image and depth map data from a given text prompt, allowing users to generate RGBD images from text prompts. The LDM3D model is fine-tuned on a dataset of tuples containing an RGB image, depth map and caption, and validated through extensive experiments. We also develop an application called DepthFusion, which uses the generated RGB images and depth maps to create immersive and interactive 360-degree-view experiences using TouchDesigner. This technology has the potential to transform a wide range of industries, from entertainment and gaming to architecture and design. Overall, this paper presents a significant contribution to the field of generative AI and computer vision, and showcases the potential of LDM3D and DepthFusion to revolutionize content creation and digital experiences. A short video summarizing the approach can be found at //t.ly/tdi2.

This paper introduces a novel explainable image quality evaluation approach called X-IQE, which leverages visual large language models (LLMs) to evaluate text-to-image generation methods by generating textual explanations. X-IQE utilizes a hierarchical Chain of Thought (CoT) to enable MiniGPT-4 to produce self-consistent, unbiased texts that are highly correlated with human evaluation. It offers several advantages, including the ability to distinguish between real and generated images, evaluate text-image alignment, and assess image aesthetics without requiring model training or fine-tuning. X-IQE is more cost-effective and efficient compared to human evaluation, while significantly enhancing the transparency and explainability of deep image quality evaluation models. We validate the effectiveness of our method as a benchmark using images generated by prevalent diffusion models. X-IQE demonstrates similar performance to state-of-the-art (SOTA) evaluation methods on COCO Caption, while overcoming the limitations of previous evaluation models on DrawBench, particularly in handling ambiguous generation prompts and text recognition in generated images. Project website: //github.com/Schuture/Benchmarking-Awesome-Diffusion-Models

A number of deep models trained on high-quality and valuable images have been deployed in practical applications, which may pose a leakage risk of data privacy. Learning differentially private generative models can sidestep this challenge through indirect data access. However, such differentially private generative models learned by existing approaches can only generate images with a low-resolution of less than 128x128, hindering the widespread usage of generated images in downstream training. In this work, we propose learning differentially private probabilistic models (DPPM) to generate high-resolution images with differential privacy guarantee. In particular, we first train a model to fit the distribution of the training data and make it satisfy differential privacy by performing a randomized response mechanism during training process. Then we perform Hamiltonian dynamics sampling along with the differentially private movement direction predicted by the trained probabilistic model to obtain the privacy-preserving images. In this way, it is possible to apply these images to different downstream tasks while protecting private information. Notably, compared to other state-of-the-art differentially private generative approaches, our approach can generate images up to 256x256 with remarkable visual quality and data utility. Extensive experiments show the effectiveness of our approach.

Medical image segmentation is a critical step in computer-aided diagnosis, and convolutional neural networks are popular segmentation networks nowadays. However, the inherent local operation characteristics make it difficult to focus on the global contextual information of lesions with different positions, shapes, and sizes. Semi-supervised learning can be used to learn from both labeled and unlabeled samples, alleviating the burden of manual labeling. However, obtaining a large number of unlabeled images in medical scenarios remains challenging. To address these issues, we propose a Multi-level Global Context Cross-consistency (MGCC) framework that uses images generated by a Latent Diffusion Model (LDM) as unlabeled images for semi-supervised learning. The framework involves of two stages. In the first stage, a LDM is used to generate synthetic medical images, which reduces the workload of data annotation and addresses privacy concerns associated with collecting medical data. In the second stage, varying levels of global context noise perturbation are added to the input of the auxiliary decoder, and output consistency is maintained between decoders to improve the representation ability. Experiments conducted on open-source breast ultrasound and private thyroid ultrasound datasets demonstrate the effectiveness of our framework in bridging the probability distribution and the semantic representation of the medical image. Our approach enables the effective transfer of probability distribution knowledge to the segmentation network, resulting in improved segmentation accuracy. The code is available at //github.com/FengheTan9/Multi-Level-Global-Context-Cross-Consistency.

Text-to-Image synthesis is the task of generating an image according to a specific text description. Generative Adversarial Networks have been considered the standard method for image synthesis virtually since their introduction. Denoising Diffusion Probabilistic Models are recently setting a new baseline, with remarkable results in Text-to-Image synthesis, among other fields. Aside its usefulness per se, it can also be particularly relevant as a tool for data augmentation to aid training models for other document image processing tasks. In this work, we present a latent diffusion-based method for styled text-to-text-content-image generation on word-level. Our proposed method is able to generate realistic word image samples from different writer styles, by using class index styles and text content prompts without the need of adversarial training, writer recognition, or text recognition. We gauge system performance with the Fr\'echet Inception Distance, writer recognition accuracy, and writer retrieval. We show that the proposed model produces samples that are aesthetically pleasing, help boosting text recognition performance, and get similar writer retrieval score as real data. Code is available at: //github.com/koninik/WordStylist.

Recovering noise-covered details from low-light images is challenging, and the results given by previous methods leave room for improvement. Recent diffusion models show realistic and detailed image generation through a sequence of denoising refinements and motivate us to introduce them to low-light image enhancement for recovering realistic details. However, we found two problems when doing this, i.e., 1) diffusion models keep constant resolution in one reverse process, which limits the speed; 2) diffusion models sometimes result in global degradation (e.g., RGB shift). To address the above problems, this paper proposes a Pyramid Diffusion model (PyDiff) for low-light image enhancement. PyDiff uses a novel pyramid diffusion method to perform sampling in a pyramid resolution style (i.e., progressively increasing resolution in one reverse process). Pyramid diffusion makes PyDiff much faster than vanilla diffusion models and introduces no performance degradation. Furthermore, PyDiff uses a global corrector to alleviate the global degradation that may occur in the reverse process, significantly improving the performance and making the training of diffusion models easier with little additional computational consumption. Extensive experiments on popular benchmarks show that PyDiff achieves superior performance and efficiency. Moreover, PyDiff can generalize well to unseen noise and illumination distributions.

Automatically generating high-quality real world 3D scenes is of enormous interest for applications such as virtual reality and robotics simulation. Towards this goal, we introduce NeuralField-LDM, a generative model capable of synthesizing complex 3D environments. We leverage Latent Diffusion Models that have been successfully utilized for efficient high-quality 2D content creation. We first train a scene auto-encoder to express a set of image and pose pairs as a neural field, represented as density and feature voxel grids that can be projected to produce novel views of the scene. To further compress this representation, we train a latent-autoencoder that maps the voxel grids to a set of latent representations. A hierarchical diffusion model is then fit to the latents to complete the scene generation pipeline. We achieve a substantial improvement over existing state-of-the-art scene generation models. Additionally, we show how NeuralField-LDM can be used for a variety of 3D content creation applications, including conditional scene generation, scene inpainting and scene style manipulation.

Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.

Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.

北京阿比特科技有限公司