亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against some students and possible harmful long-term implications. This has prompted research on fairness metrics meant to capture and quantify such biases. Nonetheless, so far, existing fairness metrics used in education are predictive performance-oriented, focusing on assessing biased outcomes across groups of students, without considering the behaviors of the models nor the severity of the biases in the outcomes. Therefore, we propose a novel metric, the Model Absolute Density Distance (MADD), to analyze models' discriminatory behaviors independently from their predictive performance. We also provide a complementary visualization-based analysis to enable fine-grained human assessment of how the models discriminate between groups of students. We evaluate our approach on the common task of predicting student success in online courses, using several common predictive classification models on an open educational dataset. We also compare our metric to the only predictive performance-oriented fairness metric developed in education, ABROCA. Results on this dataset show that: (1) fair predictive performance does not guarantee fair models' behaviors and thus fair outcomes, (2) there is no direct relationship between data bias and predictive performance bias nor discriminatory behaviors bias, and (3) trained on the same data, models exhibit different discriminatory behaviors, according to different sensitive features too. We thus recommend using the MADD on models that show satisfying predictive performance, to gain a finer-grained understanding on how they behave and to refine models selection and their usage.

相關內容

Self-supervised learning (SSL) has emerged as a promising alternative to create supervisory signals to real-world problems, avoiding the extensive cost of manual labeling. SSL is particularly attractive for unsupervised tasks such as anomaly detection (AD), where labeled anomalies are rare or often nonexistent. A large catalog of augmentation functions has been used for SSL-based AD (SSAD) on image data, and recent works have reported that the type of augmentation has a significant impact on accuracy. Motivated by those, this work sets out to put image-based SSAD under a larger lens and investigate the role of data augmentation in SSAD. Through extensive experiments on 3 different detector models and across 420 AD tasks, we provide comprehensive numerical and visual evidences that the alignment between data augmentation and anomaly-generating mechanism is the key to the success of SSAD, and in the lack thereof, SSL may even impair accuracy. To the best of our knowledge, this is the first meta-analysis on the role of data augmentation in SSAD.

The Butterfly Effect, a concept originating from chaos theory, underscores how small changes can have significant and unpredictable impacts on complex systems. In the context of AI fairness and bias, the Butterfly Effect can stem from a variety of sources, such as small biases or skewed data inputs during algorithm development, saddle points in training, or distribution shifts in data between training and testing phases. These seemingly minor alterations can lead to unexpected and substantial unfair outcomes, disproportionately affecting underrepresented individuals or groups and perpetuating pre-existing inequalities. Moreover, the Butterfly Effect can amplify inherent biases within data or algorithms, exacerbate feedback loops, and create vulnerabilities for adversarial attacks. Given the intricate nature of AI systems and their societal implications, it is crucial to thoroughly examine any changes to algorithms or input data for potential unintended consequences. In this paper, we envision both algorithmic and empirical strategies to detect, quantify, and mitigate the Butterfly Effect in AI systems, emphasizing the importance of addressing these challenges to promote fairness and ensure responsible AI development.

Many real-world applications of language models (LMs), such as writing assistance and code autocomplete, involve human-LM interaction. However, most benchmarks are non-interactive in that a model produces output without human involvement. To evaluate human-LM interaction, we develop a new framework, Human-AI Language-based Interaction Evaluation (HALIE), that defines the components of interactive systems and dimensions to consider when designing evaluation metrics. Compared to standard, non-interactive evaluation, HALIE captures (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality (e.g., enjoyment and ownership). We then design five tasks to cover different forms of interaction: social dialogue, question answering, crossword puzzles, summarization, and metaphor generation. With four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21 Labs' Jurassic-1), we find that better non-interactive performance does not always translate to better human-LM interaction. In particular, we highlight three cases where the results from non-interactive and interactive metrics diverge and underscore the importance of human-LM interaction for LM evaluation.

The pretrain-finetune paradigm usually improves downstream performance over training a model from scratch on the same task, becoming commonplace across many areas of machine learning. While pretraining is empirically observed to be beneficial for a range of tasks, there is not a clear understanding yet of the reasons for this effect. In this work, we examine the relationship between pretrained vision transformers and the corresponding finetuned versions on several benchmark datasets and tasks. We present new metrics that specifically investigate the degree to which invariances learned by a pretrained model are retained or forgotten during finetuning. Using these metrics, we present a suite of empirical findings, including that pretraining induces transferable invariances in shallow layers and that invariances from deeper pretrained layers are compressed towards shallower layers during finetuning. Together, these findings contribute to understanding some of the reasons for the successes of pretrained models and the changes that a pretrained model undergoes when finetuned on a downstream task.

Data valuation is critical in machine learning, as it helps enhance model transparency and protect data properties. Existing data valuation methods have primarily focused on discriminative models, neglecting deep generative models that have recently gained considerable attention. Similar to discriminative models, there is an urgent need to assess data contributions in deep generative models as well. However, previous data valuation approaches mainly relied on discriminative model performance metrics and required model retraining. Consequently, they cannot be applied directly and efficiently to recent deep generative models, such as generative adversarial networks and diffusion models, in practice. To bridge this gap, we formulate the data valuation problem in generative models from a similarity-matching perspective. Specifically, we introduce Generative Model Valuator (GMValuator), the first model-agnostic approach for any generative models, designed to provide data valuation for generation tasks. We have conducted extensive experiments to demonstrate the effectiveness of the proposed method. To the best of their knowledge, GMValuator is the first work that offers a training-free, post-hoc data valuation strategy for deep generative models.

In light of the recent widespread adoption of AI systems, understanding the internal information processing of neural networks has become increasingly critical. Most recently, machine vision has seen remarkable progress by scaling neural networks to unprecedented levels in dataset and model size. We here ask whether this extraordinary increase in scale also positively impacts the field of mechanistic interpretability. In other words, has our understanding of the inner workings of scaled neural networks improved as well? We here use a psychophysical paradigm to quantify mechanistic interpretability for a diverse suite of models and find no scaling effect for interpretability - neither for model nor dataset size. Specifically, none of the nine investigated state-of-the-art models are easier to interpret than the GoogLeNet model from almost a decade ago. Latest-generation vision models appear even less interpretable than older architectures, hinting at a regression rather than improvement, with modern models sacrificing interpretability for accuracy. These results highlight the need for models explicitly designed to be mechanistically interpretable and the need for more helpful interpretability methods to increase our understanding of networks at an atomic level. We release a dataset containing more than 120'000 human responses from our psychophysical evaluation of 767 units across nine models. This dataset is meant to facilitate research on automated instead of human-based interpretability evaluations that can ultimately be leveraged to directly optimize the mechanistic interpretability of models.

Explainable Artificial Intelligence (XAI) has gained significant attention recently as the demand for transparency and interpretability of machine learning models has increased. In particular, XAI for time series data has become increasingly important in finance, healthcare, and climate science. However, evaluating the quality of explanations, such as attributions provided by XAI techniques, remains challenging. This paper provides an in-depth analysis of using perturbations to evaluate attributions extracted from time series models. A perturbation analysis involves systematically modifying the input data and evaluating the impact on the attributions generated by the XAI method. We apply this approach to several state-of-the-art XAI techniques and evaluate their performance on three time series classification datasets. Our results demonstrate that the perturbation analysis approach can effectively evaluate the quality of attributions and provide insights into the strengths and limitations of XAI techniques. Such an approach can guide the selection of XAI methods for time series data, e.g., focusing on return time rather than precision, and facilitate the development of more reliable and interpretable machine learning models for time series analysis.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司